Application of Petersen graph pattern technique for automated detection of heart valve diseases with PCG signals

2021 ◽  
Vol 565 ◽  
pp. 91-104
Author(s):  
Turker Tuncer ◽  
Sengul Dogan ◽  
Ru-San Tan ◽  
U. Rajendra Acharya
Author(s):  
Gabbar Jadhav

In this paper we discussed the heart valve disease. This heart valve disease occur throughout the world due to the more ethical estimation and grow curator of heart valve diseases use the diagnosis for this type of valve disease . Actually Phonocardiogram (PCG) signals are used because it having less price and acquire the signals. In this we learn five different kind of heart areas, Also typical are aortic stenosis, mitral valve prolapse, mitral stenosis and mitral regurgitation.


2016 ◽  
pp. 20-24
Author(s):  
Bang Giap Vo ◽  
Anh Binh Ho ◽  
Van Minh Huynh

Objectives: To investigate the features of coronary artery lesions in patients over 50 with heart valve diseases and to find out the relationship between the levels of coronary artery lesions and heart valve diseases. Results: In patients over 50 year old with heart valve diseases, the rate of significant coronary artery lesions is 55.5%. In which, significant lesions in the group of both mitral and aorta valve diseases is 44.19%, only mitral valve diseases is of 70%, only aortic valve diseases is of 51.85%. There is a relationship between the severity of mitral valve diseases and right coronary artery lesions (OR 3.74: 1.64 to 8.5, p = 0.0017) and circumflex coronary artery lesions (OR 2.59: 1.16 to 5.75, p = 0.0192). The severity of heart valve lesions in significant coronary artery lesions group is higher than insignificant coronary artery lesions group or normal group. Conclusion: Coronary artery lesions is common in patients > 50 years old with heart valve diseases, there is a relationship between the severity of mitral valve diseases and and right coronary artery lesions and circumflex coronary artery lesions. Key words: coronary artery lesions, mitral valvediseases


2021 ◽  
Author(s):  
Mengyue Hu ◽  
Xu Peng ◽  
Yang Zhao ◽  
Xiaoshuang Yu ◽  
Can Cheng ◽  
...  

To conveniently and effectively cure heart valve diseases or defects, combining with transcatheter valve technology, bioprosthetic heart valves (BHVs) originated from the decellularized porcine pericardium (D-PP) have been broadly used...


Author(s):  
Mostafa A. Salama ◽  
Aboul Ella Hassanien ◽  
Jan Platos ◽  
Aly A. Fahmy ◽  
Vaclav Snasel

2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Amadeus Zhu ◽  
Jane Grande-Allen

Background: Fibrosis contributes to many heart valve diseases such as calcific aortic valve disease, rheumatic heart disease, and secondary mitral regurgitation. Heart valve leaflets are populated by quiescent, fibroblast-like valve interstitial cells (VICs). During fibrosis, VICs differentiate into activated, myofibroblast-like cells that adversely remodel the extracellular matrix. Activated VICs overexpress α-smooth muscle actin (ACTA2/αSMA) and smooth muscle 22-α (TAGLN/SM22α) and display increased contractility. Tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β) have been reported to either promote or inhibit fibrosis, depending on tissue type. Understanding how TNF-α and IL-1β affect VIC activation in the mitral valve of the heart could enable development of pharmaceutical treatments for heart valve diseases, which are currently managed surgically. Methods: To avoid artifactual activation on tissue culture plastic, VICs were encapsulated in biomimetic scaffolds consisting of polyethylene glycol (4% w/v) functionalized with protease-degradable (GGGPQGIWGQGK) and integrin-binding (RGDS) peptides. These 3D cultures were treated with 10 ng/ml TNF-α, 10 ng/ml IL-1β, or vehicle for 2 days in low-serum (1%) media. RNA and protein were measured via qRT-PCR, western blotting, and immunostaining. To measure contractility, VICs were encapsulated in collagen I (2.5 mg/ml) gels and allowed to contract freely for 2 days. Results: TNF-α and IL-1β significantly decreased RNA expression of ACTA2 (TNF-α: -91±6%, IL-1β: -99±1% change vs. vehicle) and TAGLN (TNF-α: -77±9%, IL-1β: -93±1% change). TNF-α and IL-1β also significantly decreased αSMA protein expression (TNF-α: -76±11%, IL-1β: -91±5% change) and the percentage of αSMA-positive cells (vehicle: 21±3%, TNF-α: 13±2%, IL-1β: 13±5% positive). Finally, TNF-α and IL-1β attenuated VIC-mediated collagen gel contraction (vehicle: 81±7%, TNF-α: 71±3%, IL-1β: 61±4% contraction). Conclusions: TNF-α and IL-1β decrease VIC activation in a 3D culture model of the mitral valve. These results reveal novel pathway targets for reducing fibrosis during mitral valve disease. Future work will use this model to study the downstream signaling events that drive VIC de-activation.


2021 ◽  
Author(s):  
Łukasz Wiewiórka ◽  
Jarosław Trębacz ◽  
Andrzej Gackowski ◽  
Robert Sobczyński ◽  
Maciej Stąpór ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document