Enhanced Curie temperature and magnetic entropy change of Gd63Ni37 amorphous alloy by Co substitution

2019 ◽  
Vol 115 ◽  
pp. 106614 ◽  
Author(s):  
M.N. Song ◽  
L.W. Huang ◽  
B.Z. Tang ◽  
D. Ding ◽  
X. Wang ◽  
...  
2019 ◽  
Vol 34 (04) ◽  
pp. 2050050 ◽  
Author(s):  
M. N. Song ◽  
L. W. Huang ◽  
B. Z. Tang ◽  
D. Ding ◽  
Q. Zhou ◽  
...  

Small amount of Ni was added in the [Formula: see text] binary alloy to replace the Co element for improving the formability and magnetic properties of the binary amorphous alloy. It was found that the glass formability of the [Formula: see text] amorphous alloy was significantly improved by Ni addition. The Curie temperature [Formula: see text] of the [Formula: see text] metallic glasses decreases with the Ni addition, and the maximum magnetic entropy change [Formula: see text] was also improved. The mechanism for the effect of adding a small quantity of Ni on the [Formula: see text] and [Formula: see text] of the [Formula: see text] amorphous alloy was studied.


2018 ◽  
Vol 185 ◽  
pp. 04021
Author(s):  
Alexander Inishev ◽  
Evgeny Gerasimov ◽  
Nikolay Mushnikov ◽  
Pavel Terentev ◽  
Vasily Gaviko

The magnetic and magnetothermal properties of the non-stoichiometric TbCo2Nix (0 ≤ x ≤ 0.2) alloys were studied. It was found that the concentration dependence of the Curie temperature and magnetic moment of the 3d-sublattice have a maximum at x = 0.025. The obtained experimental magnetic properties of the TbCo2Nix alloys were discussed under assumption that the Co magnetic moment in the compounds changes with increasing x. The magnetic entropy change was determined using the temperature dependences of the magnetization and Maxwell’s thermodynamic relation. The obtained results for TbCo2Nix were compared with those for the ErCo2Mnx alloys.


2013 ◽  
Vol 378 ◽  
pp. 225-229 ◽  
Author(s):  
Yeong Seung Jeong ◽  
M.S. Anwar ◽  
Faheem Ahmed ◽  
Seung Rok Lee ◽  
Bon Heun Koo

We report the magnetic transition and large magnetic entropy change in Sr doped lanthanum manganites. Polycrystalline La1-xSrxMnO3(0.20x0.35) samples were prepared using the conventional solid-state reaction method. The results of X-ray diffraction indicates perovskite phase without any impurity. The magnetic study has revealed that the Curie temperature is influenced by Sr-concentration. The doping of Sr at La site affects the Mn-O bond length and Mn-O-Mn bond angle due to the difference in their ionic radii, consequently, the Curie temperature changed. A large magnetic entropy change has been observed for La0.8Sr0.2MnO3sample, the value of the maximum entropy change (SMmax) increases from 1.42 to 2.74 J/kgK as magnetic field increases from 1 to 2.5 T. This investigation suggests that La1-xSrxMnO3can be used as a potential magnetic refrigeration material.


2015 ◽  
Vol 1120-1121 ◽  
pp. 406-413 ◽  
Author(s):  
Yun Zong ◽  
Di Kang

Polycrystalline layered perovskite manganese oxides La1.4Sr1.6-xCaxMn2O7 (x=0,0.2,0.4,0.8,1.0,1.4,1.6) samples is prepared using solid state reaction.The XRD analysis shows that La1.4Sr1.6-xCaxMn2O7 (0 ≤ x ≤ 0.8) samples are Sr3Ti2O7-type tetragonal structure with space group I4/mmm and forms a layered perovskite structure; for the 1.0≤ x ≤1.6 series of samples the main phase is ABO3 type orthorhombic structure with space group Pbnm.For small amount of Ca2+ ion-doped sample (x= 0.2,0.4), induce serious Jahn-Teller(J-T) distortion of MnO6 octahedral.For a large number of doping (1.0≤ x ≤1.6) samples, ferromagnetic - paramagnetic transition occurs near the Curie temperature (Tc) from low to high temperatures.With increasing doping amount, the magnetization reached maximum at x=1.4 samples.Maximum magnetic entropy change of the three samples(x=1.0,1.4,1.6) reaches 0.84, 1.20 and 2.28 J kg-1 K-1 at 320,268 and 215K near the Curie temperature, respectively. The large magnetic entropy change effect under low magnetic field of the sample makes it an optimal candidate of room temperature magnetic refrigeration materials.


2009 ◽  
Vol 154 ◽  
pp. 163-168 ◽  
Author(s):  
R.A. Szymczak ◽  
Aleksandra Kolano-Burian ◽  
Roman Kolano ◽  
R. Puzniak ◽  
V.P. Dyakonov ◽  
...  

The magnetocaloric effect in La0.6Ca0.4MnO3 manganite has been investigated. The isothermal magnetization versus applied magnetic field at various temperatures in the vicinity of Curie temperature was measured, and the temperature dependence of magnetic entropy change was determined using Maxwell’s relation. This value is comparable to that in Gd. Nevertheless, the relative cooling power of La0.6Ca0.4MnO3 was shown to be considerably lower than that of Gd. The experimental results have been analyzed in frames of a phenomenological statistical model. This model considers explicitly Jahn-Teller interactions and allows prediction of the field dependences of the magnetic entropy change and the relative cooling power.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1741
Author(s):  
Ping Han ◽  
Ziyang Zhang ◽  
Jia Tan ◽  
Xue Zhang ◽  
Yafang Xu ◽  
...  

To investigate the effect of crystallization treatment on the structure and magnetocaloric effect of Gd60Co40 amorphous alloy, the melt-spun ribbons were annealed at 513 K isothermally for 20, 40 and 60 min. The results indicate that, with increasing annealing time, the Gd4Co3 (space group P63/m) and Gd12Co7 (space group P21/c) phases precipitated from the amorphous precursor in sequence. In particular, in the samples annealed for 40 and 60 min, three successive magnetic transitions corresponding to the phases of Gd4Co3, Gd12Co7 and remaining amorphous matrix were detected, which induced an overlapped broadened profile of magnetic entropy change (|ΔSM|) versus temperature. Under magnetic field changing from 0 to 5 T, |ΔSM| values of 6.65 ± 0.1 kg−1·K−1 and 6.44 ± 0.1 J kg−1·K−1 in the temperature spans of 180–196 K and 177–196 K were obtained in ribbons annealed for 40 and 60 min, respectively. Compared with the fully amorphous alloy, the enhanced relative cooling power and flattened magnetocaloric effect of partially crystallized composites making them more suitable for the Ericsson thermodynamic cycle.


2018 ◽  
Vol 32 (08) ◽  
pp. 1850085
Author(s):  
Li Yan Ma ◽  
Liang Hua Gan ◽  
Lei Xia ◽  
JiaZheng Zhang ◽  
Ding Ding

The glass-forming ability (GFA) and magnetic properties of the minor Zr-substituted Gd[Formula: see text]Co[Formula: see text] amorphous alloy were investigated. The Gd[Formula: see text]Co[Formula: see text]Zr2 amorphous ribbons prepared by melt-spinning show better GFA. With increasing minor Zr addition, the Gd[Formula: see text]Co[Formula: see text]Zr2 amorphous ribbons possessed higher magnetic entropy change peak ([Formula: see text]S[Formula: see text] = 3.9 Jkg[Formula: see text]K[Formula: see text], under 5 T) but lower Curie temperature (T[Formula: see text] = 231 K) than the Gd[Formula: see text]Co[Formula: see text] amorphous alloy. The mechanism for the improved GFA, magnetocaloric effect (MCE) and the decrease in T[Formula: see text] was investigated. Finally, combined with other Gd-based amorphous ribbons, the Gd[Formula: see text]Co[Formula: see text]Zr2 amorphous alloy was employed to construct amorphous composites to achieve a table-like magnetic entropy change profile, which can provide optimal efficiency when utilizing an Ericsson thermodynamic cycle.


2014 ◽  
Vol 115 (17) ◽  
pp. 17A929 ◽  
Author(s):  
Pablo Alvarez-Alonso ◽  
José L. Sánchez Llamazares ◽  
César F. Sánchez-Valdés ◽  
Gabriel J. Cuello ◽  
Victorino Franco ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document