Effect of shot peening on notched fatigue performance of powder metallurgy Udimet 720Li superalloy

2021 ◽  
Vol 135 ◽  
pp. 107226
Author(s):  
Chengli Dong ◽  
Shengkai Yang ◽  
Zichao Peng
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
H. S. Ho ◽  
D. L. Li ◽  
E. L. Zhang ◽  
P. H. Niu

The present study is conducted with a dual-aim: firstly, to examine the effect of several single shot peening conditions on the subsurface layer properties and fatigue performance of the case-hardened 18CrNiMo7-6 steel, and secondly, to propose an optimized peening condition for improved fatigue performance. By carrying out the subsurface integrity analysis and fatigue testing, the underlying relationships among the peening process, subsurface layer property and fatigue performance are investigated, the way peening conditions affect the fatigue life and its associated scatter for the case-hardened 18CrNiMo7-6 steel is quantitatively assessed. The in-depth study shows that dual peening can be an optimized solution, for it is able to produce a subsurface layer with enhanced properties and eventually gain a significant improvement in fatigue performance.


2007 ◽  
Vol 539-543 ◽  
pp. 1553-1558 ◽  
Author(s):  
Janny Lindemann ◽  
Anja Kutzsche ◽  
Michael Oehring ◽  
Fritz Appel

The effect of shot peening and roller burnishing on the fatigue performance of the γ(TiAl) alloy Ti-45Al-9Nb-0.2C was investigated over a wide range of processing intensities. At optimized conditions shot peening and roller burnishing can markedly improve the fatigue strength at ambient temperatures. For temperatures above 650 °C, the residual compressive stresses induced by shot peening and roller burnishing quickly relax. This indicates that, at elevated temperatures, surface roughness and dislocation strengthening become more important for the fatigue performance of mechanically surface-treated components. Roller burnishing leads to much lower surface roughness than shot peening, resulting in more effective improvement of high temperature fatigue performance. However, surface strengthening by shot peening can also be beneficial for the fatigue performance at elevated temperatures, when the surface roughness is reduced by subsequent polishing.


2019 ◽  
Vol 127 ◽  
pp. 53-57 ◽  
Author(s):  
Y.X. Chen ◽  
J.C. Wang ◽  
Y.K. Gao ◽  
A.H. Feng

2008 ◽  
Vol 273-276 ◽  
pp. 348-353 ◽  
Author(s):  
H. Abdoos ◽  
H. Khorsand ◽  
A.R. Shahani ◽  
M. Arjomandi

Powder metallurgy is a new method for mass production of precision components with appropriate mechanical properties, but in this kind of materials (PM parts) with special microstructures (pores act as local stress risers), fracture due to fatigue is expected as an important destructive factor. Various microstructures in powder metallurgy steels, depending on alloying methods, have different response against cyclic loading. diffusion bonding is an effective method to obtain high fatigue performance in PM steels. The main characteristic of this materials consists of well-organized phases distribution due to incomplete diffusion of alloying elements. In this study fatigue behavior of diffusion-bonded, distaloy AE, steel with two carbon contents under different periodic loading are investigated. The effect of carbon content and various loading mode upon fatigue performance is analyzed. Metallugraphy and fractography examination on fatigue loaded samples revealed the positive effect of microstructure heterogeneity on fatigue crack behavior and this concept is a reason for increasing of diffusion-bonded powders application to manufacturing of components that are subjected to cyclic stresses.


Sign in / Sign up

Export Citation Format

Share Document