scholarly journals Shot Peening Effects on Subsurface Layer Properties and Fatigue Performance of Case-Hardened 18CrNiMo7-6 Steel

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
H. S. Ho ◽  
D. L. Li ◽  
E. L. Zhang ◽  
P. H. Niu

The present study is conducted with a dual-aim: firstly, to examine the effect of several single shot peening conditions on the subsurface layer properties and fatigue performance of the case-hardened 18CrNiMo7-6 steel, and secondly, to propose an optimized peening condition for improved fatigue performance. By carrying out the subsurface integrity analysis and fatigue testing, the underlying relationships among the peening process, subsurface layer property and fatigue performance are investigated, the way peening conditions affect the fatigue life and its associated scatter for the case-hardened 18CrNiMo7-6 steel is quantitatively assessed. The in-depth study shows that dual peening can be an optimized solution, for it is able to produce a subsurface layer with enhanced properties and eventually gain a significant improvement in fatigue performance.


2018 ◽  
Vol 165 ◽  
pp. 22011
Author(s):  
Hsin Shen Ho ◽  
Junfeng Xie ◽  
Lingli Sun ◽  
Penghui Niu ◽  
Erliang Zhang

The present study is conducted with a dual-aim; firstly, examine the effect of several single shot peening conditions on the subsurface layer properties and fatigue performance of the case-hardened 18CrNiMo7-6 steel. By carrying out the subsurface integrity analysis and fatigue testing, the underlying relationships among the peening process, subsurface layer property and fatigue performance are investigated, the way peening conditions affect the fatigue life and its associated scatter for the casehardened 18CrNiMo7-6 steel is quantitatively assessed.



1990 ◽  
Vol 57 (2) ◽  
pp. 307-312 ◽  
Author(s):  
Y. F. Al-Obaid

In this paper, a rudimentary analysis of improving fatigue life of metals is presented. The process is viewed as one of repeated impact of a stream of hard shots on to a target. The model considers first a single shot impinging upon a target and, on bouncing, it leaves a residual stress below the surface of the target. The problem is then generalized to consider the effect of a stream of shots by assuming their effect to be uniformly distributed over the entire surface. The analysis is highly simplified and it mainly aims at understanding the mechanics of this complicated process. Although rudimentary, the theoretical analysis is seen to be in reasonable agreement with experimental results performed with shots on targets of various materials.



2015 ◽  
Vol 21 (3) ◽  
pp. 270-278 ◽  
Author(s):  
Sophia Ziemian ◽  
Maryvivian Okwara ◽  
Constance Wilkens Ziemian

Purpose – This paper aims to define the effect of specimen mesostructure on the monotonic tensile behavior and tensile-fatigue life of layered acrylonitrile butadiene styrene (ABS) components fabricated by fused deposition modeling (FDM). Design/methodology/approach – Tensile tests were performed on FDM dogbone specimens with four different raster orientations according to ASTM standard D638-03. Resulting ultimate tensile stresses (UTS) for each raster orientation were used to compute the maximum stress for fatigue testing, i.e. 90, 75, 60 and 50 or 45 per cent nominal values of the UTS. Multiple specimens were subjected to tension – tension fatigue cycling with stress ratio of R = 0.10 in accordance with ASTM standard D7791-12. Findings – Both tensile strength and fatigue performance exhibited anisotropic behavior. The longitudinal (0°) and default (+45/−45°) raster orientations performed significantly better than the diagonal (45°) or transverse (90°) orientations in regards to fatigue life, as displayed in the resulting Wohler curves. Practical implications – Raster orientation has a significant effect on the fatigue performance of FDM ABS components. Aligning FDM fibers along the axis of the applied stress provides improved fatigue life. If the direction of applied stresses is not expected to be constant in given application, the default raster orientation is recommended. Originality/value – This project provides knowledge to the limited work published on the fatigue performance of FDM ABS components. It provides S-N fatigue life results that can serve as a foundation for future work, combining experimental investigations with theoretical principles and the statistical analysis of data.



2021 ◽  
Vol 9 (4) ◽  
pp. 419
Author(s):  
Jin Gan ◽  
Zi’ang Gao ◽  
Yiwen Wang ◽  
Zhou Wang ◽  
Weiguo Wu

Ship hatch corner is a common structure in a ship and its fatigue problem has always been one of the focuses in ship engineering due to the long–term high–stress concentration state during the ship’s life. For investigating the fatigue life improvement of the ship hatch corner under different shot peening (SP) treatments, a series of fatigue tests, residual stress and surface topography measurements were conducted for SP specimens. Furthermore, the distributions of the surface residual stress are measured with varying numbers of cyclic loads, investigating the residual stress relaxation during cyclic loading. The results show that no matter which SP process parameters are used, the fatigue lives of the shot–peened ship hatch corner specimens are longer than those at unpeened specimens. The relaxation rate of the residual stress mainly depends on the maximum compressive residual stress (σRSmax) and the depth of the maximum compressive residual stress (δmax). The larger the values of σRSmax and δmax, the slower the relaxation rates of the residual stress field. The results imply that the effect of residual stress field and surface roughness should be considered comprehensively to improve the fatigue life of the ship hatch corner with SP treatment. The increase in peening intensity (PI) within a certain range can increase the depth of the compressive residual stress field (CRSF), so the fatigue performance of the ship hatch corner is improved. Once the PI exceeds a certain value, the surface damage caused by the increase in surface roughness will not be offset by the CRSF and the fatigue life cannot be improved optimally. This research provides an approach of fatigue performance enhancement for ship hatch corners in engineering application.



2012 ◽  
Vol 1485 ◽  
pp. 35-40
Author(s):  
Juan Solórzano-López ◽  
Francisco Alfredo García-Pastor

ABSTRACTShot peening is a widely applied surface treatment in a number of manufacturing processes in several industries including automotive, mechanical and aeronautical. This surface treatment is used with the aim of increasing surface toughness and extending fatigue life. The increased performance during fatigue testing of the peened components is mainly the result of the sub-surface compressive residual stress field resulting from the plastic deformation of the surface layers of the target material, caused by the high-velocity impact of the shot. This compressive residual stress field hinders the propagation and coalescence of cracks during the second stage of fatigue testing, effectively increasing the fatigue life well beyond the expected life of a non-peened component.This paper describes a 3D computational model of spherical projectiles impacting simultaneously upon a flat surface. The multi-impact model was developed in ABAQUS/Explicit using finite element method (FEM) and taking into account controlling parameters such as the velocity of the projectiles, their incidence angle and different impact locations in the target surface. Additionally, a parametric study of the physical properties of the target material was carried out in order to assess the effect of temperature on the residual stress field.The simulation has been able to successfully represent a multi-impact processing scenario, showing the indentation caused by each individual shot, as well as the residual stress field for each impact and the interaction between each one of them. It has been found that there is a beneficial effect on the residual stress field magnitude when shot peening is carried out at a relatively high temperature. The results are discussed in terms of the current shot-peening practice in the local industry and the leading edge developments of new peening technologies. Finally, an improved and affordable processing route to increase the fatigue life of automotive components is suggested.



2019 ◽  
Vol 803 ◽  
pp. 27-31
Author(s):  
Mohd Rashdan Isa ◽  
Saiful Naim Sulaiman ◽  
Omar Suliman Zaroog

Compressive residual stress below the surface of material could increase fatigue life as it encounters the tensile loading applied on the material during operation. Shot peening process is a common surface treatment to introduce this stress. This study will investigate on how to introduce the same amount of residual stress by simulation using FEM as introduced in experimental shot peening process. Actual shot peening process was done using a particular sets of parameters and FEM with single shot is used to simplify the simulation procedure. Result shows that using a single shot simulation could also introduce the equivalent amount of residual stress as in the experimental multi-shots shot peening process. This value could be used in further study to study the relaxation of the stress after load is being applied.



Author(s):  
Paul S. Preve´y ◽  
Ravi A. Ravindranath ◽  
Michael Shepard ◽  
Timothy Gabb

Surface enhancement technologies such as shot peening, laser shock peening (LSP), and low plasticity burnishing (LPB) can provide substantial fatigue life improvement. However, to be effective, the compressive residual stresses that increase fatigue strength must be retained in service. For successful integration into turbine design, the process must be affordable and compatible with the manufacturing environment. LPB provides thermally stable compression of comparable magnitude and even greater depth than other methods, and can be performed in conventional machine shop environments on CNC machine tools. LPB provides a means to extend the fatigue lives of both new and legacy aircraft engines and ground-based turbines. Improving fatigue performance by introducing deep stable layers of compressive residual stress avoids the generally cost prohibitive alternative of modifying either material or design. The x-ray diffraction based background studies of thermal and mechanical stability of surface enhancement techniques are briefly reviewed, demonstrating the importance of minimizing cold work. The LPB process, tooling, and control systems are described. An overview of current research programs conducted for engine OEMs and the military to apply LPB to a variety of engine and aging aircraft components are presented. Fatigue performance and residual stress data developed to date for several case studies are presented including: • The effect of LPB on the fatigue performance of the nickel based super alloy IN718, showing the fatigue benefit of thermal stability at engine temperatures. • An order of magnitude improvement in damage tolerance of LPB processed Ti-6-4 fan blade leading edges. • Elimination of the fretting fatigue debit for Ti-6-4 with prior LPB. • Corrosion fatigue mitigation with LPB in Carpenter 450 steel. • Damage tolerance improvement in 17-4PH steel. Where appropriate, the performance of LPB is compared to conventional shot peening after exposure to engine operating temperatures.



2006 ◽  
Vol 128 (4) ◽  
pp. 865-872 ◽  
Author(s):  
Paul S. Preve´y ◽  
Ravi A. Ravindranath ◽  
Michael Shepard ◽  
Timothy Gabb

Surface enhancement technologies such as shot peening, laser shock peening, and low plasticity burnishing (LPB) can provide substantial fatigue life improvement. However, to be effective, the compressive residual stresses that increase fatigue strength must be retained in service. For successful integration into turbine design, the process must be affordable and compatible with the manufacturing environment. LPB provides thermally stable compression of comparable magnitude and even greater depth than other methods, and can be performed in conventional machine shop environments on CNC machine tools. LPB provides a means to extend the fatigue lives of both new and legacy aircraft engines and ground-based turbines. Improving fatigue performance by introducing deep stable layers of compressive residual stress avoids the generally cost prohibitive alternative of modifying either material or design. The x-ray diffraction based background studies of thermal and mechanical stability of surface enhancement techniques are briefly reviewed, demonstrating the importance of minimizing cold work. The LPB process, tooling, and control systems are described. An overview of current research programs conducted for engine OEMs and the military to apply LPB to a variety of engine and aging aircraft components are presented. Fatigue performance and residual stress data developed to date for several case studies are presented including the following. (1) The effect of LPB on the fatigue performance of the nickel based super alloy IN718, showing the fatigue benefit of thermal stability at engine temperatures. (2) An order of magnitude improvement in damage tolerance of LPB processed Ti-6-4 fan blade leading edges. (3) Elimination of the fretting fatigue debit for Ti-6-4 with prior LPB. (4) Corrosion fatigue mitigation with LPB in Carpenter 450 steel. (5) Damage tolerance improvement in 17-4 PH steel. Where appropriate, the performance of LPB is compared to conventional shot peening after exposure to engine operating temperatures.



2021 ◽  
Author(s):  
Shun YANG

Abstract Characterization on the surface morphology, residual stress relaxation and fatigue life prediction of the changed intensity shot peening specimens machined from SS304 were carried out. The present work aims, first and foremost, to model the fatigue performance of shot peening specimens machined from SS304 in extra-low-, low- and high-cycle regime by clarifying the relaxation life component and fatigue life component with the total failure life, thereby successfully evaluating the fatigue performance of un-/0.1 mmA-/0.25 mmA-/0.4 mmA-peened components with satisfactory results in the whole cycle regime. It is, therefore, essential to provide a precise definition of the master life diagram on the purpose of evaluating the fatigue performance of shot peening components in service by linear interpolation of shot peening intensities considering the engineering applicability. Additionally, the characterization of multiple-fatigue crack initiation to failure was also identified by fractography analysis, which reasonably illustrated the non-conservative life prediction in the high-cycle regime.



Author(s):  
Marcos Esterman ◽  
Ivan M. Nevarez ◽  
Kosuke Ishii ◽  
Drew V. Nelson

Abstract Fatigue data usually display substantial scatter. The goal of this paper is to demonstrate how simulated variation in surface treatment processing parameters and material properties affect the predicted fatigue life (mean and scatter) of a component. This is achieved by applying robust design principles to fatigue life evaluation methods, using shot peening as the representative manufacturing process for this study. Analyzing changes in the appropriate fatigue performance quality characteristic due to variations in the process parameters and material properties will identify levels of the controllable process parameters which maximize the mean fatigue performance and minimize its scatter. The simulation predictions of this study are consistent with past experimental observations which show that compressive residual stress distributions tend to increase mean fatigue life and reduce its scatter for a component. Our results extend these observations by relating the increase in mean life and the reduction in scatter to the controllable manufacturing and design parameters. In addition, the intermediate measure of compressive zone depth is identified as a possible off-line production quality check that relates directly to the component fatigue performance (mean and scatter), as well as an aid to the designer to identify an appropriate surface treatment process. This study serves as an initial step in the development of a generalized methodology that can aid engineers with design for robust fatigue performance for other manufacturing processes.



Sign in / Sign up

Export Citation Format

Share Document