Immunomodulatory effects of adipose-derived mesenchymal stem cells on the gene expression of major transcription factors of T cell subsets

2014 ◽  
Vol 20 (2) ◽  
pp. 316-321 ◽  
Author(s):  
Adel Mohammadzadeh ◽  
Ali Akbar Pourfathollah ◽  
Somayeh Shahrokhi ◽  
Seyed Mahmoud Hashemi ◽  
Sadegh Lotf Alah Moradi ◽  
...  
2009 ◽  
Vol 22 (1-2) ◽  
pp. 55-61 ◽  
Author(s):  
Xiaoxi Lu ◽  
Ting Liu ◽  
Ling Gu ◽  
Chunlan Huang ◽  
Huanling Zhu ◽  
...  

Cytokine ◽  
2020 ◽  
pp. 155367
Author(s):  
Rabia Bilge Özgül Özdemir ◽  
Alper Tunga Özdemir ◽  
Cengiz Kırmaz ◽  
Ayla Eker Sarıboyacı ◽  
Erdal Karaöz ◽  
...  

Author(s):  
Rasoul Baharlou ◽  
Nesa Rashidi ◽  
Abbas Ahmadi-Vasmehjani ◽  
Mahshid Khoubyari ◽  
Maryam Sheikh ◽  
...  

Adipose-derived mesenchymal stem cells (Ad-MSCs) have been reported to suppress the effector T cell responses and have beneficial effects on various immune disorders, like rheumatoid arthritis (RA). This study was designed to investigate the effects of co-cultured Ad-MSCs on peripheral blood mononuclear cells (PBMCs) of RA patients and healthy individuals, through assessing transcription factors of T cell subsets. PBMCs from RA patients and healthy donors were co-cultured with Ad-MSCs with or without Phytohaemagglutinin (PHA). The quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure the expression of T-box 21 (T-bet), GATA-binding protein-3 (GATA3), retinoid-related orphan receptor γt (ROR-γt) and forkhead box P3 (Foxp3). Based on the results, Ad-MSCs greatly upregulated Th2 and Treg cell transcription factors, i.e., GATA3 and Foxp3 (p<0.05), and downregulated Th1 and Th17 transcription factors, i.e., T-bet and RORγt (p<0.05). These results demonstrate that Ad-MSCs can result in an immunosuppressive environment through inhibition of pro-inflammatory T cells and induction of T cells with a  regulatory phenotype. Therefore, they might have important clinical implications for inflammatory and autoimmune diseases such as RA.


2016 ◽  
Vol 310 ◽  
pp. 108-115 ◽  
Author(s):  
Alper Tunga Özdemir ◽  
Rabia Bilge Özgül Özdemir ◽  
Cengiz Kırmaz ◽  
Ayla Eker Sarıboyacı ◽  
Zehra Seda Ünal Halbutoğlları ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Minhwa Park ◽  
Yu-Hee Kim ◽  
Jung-Hwa Ryu ◽  
So-Youn Woo ◽  
Kyung-Ha Ryu

Mesenchymal stem cells (MSCs) are considered valuable sources for cell therapy because of their immune regulatory function. Here, we investigated the effects of tonsil-derived MSCs (T-MSCs) on the differentiation, maturation, and function of dendritic cells (DCs). We examined the effect of T-MSCs on differentiation and maturation of bone-marrow- (BM-) derived monocytes into DCs and we found suppressive effect of T-MSCs on DCs via direct contact as well as soluble mediators. Moreover, T cell proliferation, normally increased in the presence of DCs, was inhibited by T-MSCs. Differentiation of CD4+T cell subsets by the DC-T cell interaction also was inhibited by T-MSCs. The soluble mediators suppressed by T-MSCs were granulocyte-macrophage colony-stimulating factor (GM-CSF), RANTES, interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1). Taken together, T-MSCs exert immune modulatory function via suppression of the differentiation, maturation, and function of BM-derived DCs. Our data suggests that T-MSCs could be used as a novel source of stem cell therapy as immune modulators.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A554-A554
Author(s):  
Rhodes Ford ◽  
Paolo Vignali ◽  
Natalie Rittenhouse ◽  
Nicole Scharping ◽  
Andrew Frisch ◽  
...  

BackgroundTumor-infiltrating CD8+ T cells have been characterized by their exhausted phenotype with decreased cytokine expression and increased expression of co-inhibitory receptors, such as PD-1 and Tim-3. These receptors mark the progression towards exhaustion from a progenitor stage (PD-1Low) to a terminally exhausted stage (PD-1+Tim-3+). While the epigenetics of tumor-infiltrating T cells are unique compared to naïve, effector, and memory populations, how the chromatin landscape changes during this progression has not been described.MethodsUsing a low-input ChIP-based assay called Cleavage Under Targets and Release Using Nuclease (CUT&RUN), we profiled the histone modifications at the chromatin of tumor-infiltrating CD8+ T cell subsets to better understand the relationship between the epigenome and the transcriptome as TIL progress towards terminal exhaustion.ResultsWe have identified two epigenetic characteristics unique to terminally exhausted cells. First, we found a substantial increase in the number of genes that exhibit bivalent chromatin marks, defined by the presence of both activating (H3K4me3) and repressive (H3K27me3) epigenetic modifications that inhibit gene expression. In contrast to stem cells which exhibit bivalency, bivalent genes in terminally exhausted T cells are not associated with plasticity and represent aberrant hypermethylation in response to tumor hypoxia. Secondly, we have also identified a unique set of enhancers, characterized by H3K27ac that do not drive gene expression. These enhancers are enriched for AP-1 transcription factors, whereas enhancers that correlate with gene transcription are enriched for nuclear receptor (NR) transcription factors. Intriguingly, while most AP-1 and NR transcription factors are not expressed in terminally exhausted cells, we found that Batf, an inhibitory AP-1 family member, and Nr4a2, a NR known to promote both exhaustion and modify chromatin were specifically expressed in terminally exhausted cells. These data suggest the balance of Batf and Nr4a2 may modulate the enhancer landscape to promote terminal exhaustion, while hypoxia simultaneously promotes hypermethylation and gene repression.ConclusionsOur study defines for the first time the features of epigenetic dysfunction in tumor-mediated T cell exhaustion and deepens our understanding of the epigenetic regulation of gene expression. These observations are the bases for future work that will elucidate that factors that drive progression towards terminal T cell exhaustion at the epigenetic level and identify novel therapeutic targets to restore effector function of tumor T cells and mediate tumor clearance.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1930-1930 ◽  
Author(s):  
Muzlifah A. Haniffa ◽  
Xiao N. Wang ◽  
Udo Holtick ◽  
Daniel C. Swan ◽  
Sarah Bullock ◽  
...  

Abstract Bone marrow mesenchymal stem cells (MSC) have potent immunosuppressive properties and are being evaluated in human trials of graft versus host disease (GVHD). The nature of their suppressive capacity is not well understood but attributed to their stem cell function. Evidence that adult stromal cells such as fibroblasts (Fb) also modulate T cell functions has important implications for immunoregulation and cellular therapy. We have investigated the phenomenon of MSC-mediated immunosuppression by comparing MSC with Fb of different origins in in vitro assays of T cell suppression and modulation. We have then isolated RNA from paired samples of dermal Fb and MSC from 6 healthy volunteers for comparative gene expression studies. Adherent Fb were isolated from digested dermis, synovium and lung. MSC were obtained from BM aspirate. Fb from the dermis, lung and synovium possess potent immunomodulatory properties. Fb suppress allogeneic T cell activation by autologously derived cutaneous antigen presenting cells and other stimulators. Fb-mediated suppression through soluble factors is dependent on IFNγ from activated T cells. IFNγ induces indoleamine-2, 3, dioxygenase in Fb with accelerated tryptophan metabolism being partly responsible for suppressing T cell proliferation. T cell suppression is reversible and exposure to stromal cells during activation reprogrammes T cells, increasing secretion of interleukin-4 2.3 fold, interleukin-10 4.3 fold and interleukin-13 15 fold (means of 4 experiments) upon restimulation. Increased Th2 polarization by stromal cells is associated with amelioration of pathological changes in an in vitro human GVHD model. Our findings also show that Fb from different sources are indistinguishable from MSC with respect to morphology, phenotype, growth and differentiation capacity in vitro. Clonogenicity (ratio of CFU to CD73+CD45- cells) of Fb and MSC are similar (range 0.2 to 0.46 CFU/cell) proving that the immunosuppressive effects of Fb from adult tissues are not due to the expansion of rare ‘stem’ cells. Using paired isolates of dermal Fb and MSC to control for inter-individual variation, we were able to define consistent differences in gene expression. Microarray assays were performed using a Human Genome Focus Affymetrix array and analysed with GeneSpring GX. 143 of 9600 probesets showed reproducible differences in transcript levels between dermal Fb and MSC. Probesets upregulated in MSC include genes encoding immunomodulatory mediators: vascular endothelial growth factor (7 fold), hydroxysteroid 17β dehydrogenase (10 fold) and jagged1 (5 fold); extracellular adhesion molecules: proteoglycan1 (264 fold), vascular cell adhesion molecule (175 fold), transglutaminase (67 fold) and procollagen (8 fold); and developmental regulators in the Hedgehog and Wnt signalling pathways. Our findings are further evidence that immunosuppression is a generic property of Fb isolated from several sources and not restricted to MSC. We have for the first time identified a differential expression profile of MSC compared with Fb. These differences may not confer unique in vivo immunosuppressive properties and the potential of Fb as an alternative source of cellular therapy remains untested.


Sign in / Sign up

Export Citation Format

Share Document