L-Fucose ameliorates DSS-induced acute colitis via inhibiting macrophage M1 polarization and inhibiting NLRP3 inflammasome and NF-kB activation

2019 ◽  
Vol 73 ◽  
pp. 379-388 ◽  
Author(s):  
Ruohang He ◽  
Ying Li ◽  
Chaoqun Han ◽  
Rong Lin ◽  
Wei Qian ◽  
...  
2021 ◽  
Author(s):  
Huiwen Tian ◽  
Shumei Lin ◽  
Jing Wu ◽  
Ming Ma ◽  
Jian Yu ◽  
...  

Abstract Corneal transplantation rejection remains a major threat to the success rate in high-risk patients. Given the many side effects presented by traditional immunosuppressants, there is an urgency to clarify the mechanism of corneal transplantation rejection and to identify new therapeutic targets. Kaempferol is a natural flavonoid that has been proven in various studies to possess anti-inflammatory, antioxidant, anticancer, and neuroprotective properties. However, the relationship between kaempferol and corneal transplantation remains largely unexplored. To address this, both in vivo and in vitro, we established a model of corneal allograft transplantation in Wistar rats and an LPS-induced inflammatory model in THP-1 derived human macrophages. In the transplantation experiments, we observed an enhancement in the NLRP3 / IL-1 β axis and in M1 macrophage polarization post-operation. In groups to which kaempferol intraperitoneal injections were administered, this response was effectively reduced. However, the effect of kaempferol was reversed after the application of autophagy inhibitors. Similarly, in the inflammatory model, we found that different concentrations of kaempferol can reduce the LPS-induced M1 polarization and NLRP3 inflammasome activation. Moreover, we confirmed that kaempferol induced autophagy and that autophagy inhibitors reversed the effect in macrophages. In conclusion, we found that kaempferol can inhibit the activation of the NLRP3 inflammasomes by inducing autophagy, thus inhibiting macrophage polarization, and ultimately alleviating corneal transplantation rejection. Thus, our study suggests that kaempferol could be used as a potential therapeutic agent in the treatment of allograft rejection.


2018 ◽  
Vol 315 (6) ◽  
pp. G909-G920 ◽  
Author(s):  
Lanju Wang ◽  
Yaohui Wang ◽  
Zhenfeng Wang ◽  
Yu Qi ◽  
Beibei Zong ◽  
...  

Growth differentiation factor 11 (GDF11) has an anti-inflammatory effect in the mouse model of atherosclerosis and Alzheimer's disease, but how GDF11 regulates intestinal inflammation during ulcerative colitis (UC) is poorly defined. The Nod-like receptor family pyrin domain-1 containing 3 (NLRP3) inflammasome is closely associated with intestinal inflammation because of its ability to increase IL-1β secretion. Our aim is to determine whether GDF11 has an effect on attenuating experimental colitis in mice. In this study, using a dextran sodium sulfate (DSS)-induced acute colitis mouse model, we reported that GDF11 treatment attenuated loss of body weight, the severity of the disease activity index, shortening of the colon, and histological changes in the colon. GDF11 remarkably suppressed IL-1β secretion and NLRP3 inflammasome activation in colon samples and RAW 264.7 cells, such as the levels of NLRP3 and activated caspase-1. Furthermore, we found that GDF11 inhibited NLRP3 inflammasome activation by downregulating the Toll-like receptor 4/NF-κB p65 pathway and reactive oxygen species production via the typical Smad2/3 pathway. Thus, our research shows that GDF11 alleviates DSS-induced colitis by inhibiting NLRP3 inflammasome activation, providing some basis for its potential use in the treatment of UC. NEW & NOTEWORTHY Here, we identify a new role for growth differentiation factor 11 (GDF11), which ameliorates dextran sodium sulfate-induced acute colitis. Meanwhile, we discover a new phenomenon of GDF11 inhibiting IL-1β secretion and Nod-like receptor family pyrin domain-1 containing 3 (NLRP3) inflammasome activation. These findings reveal that GDF11 is a new potential candidate for the treatment of ulcerative colitis patients with a hyperactive NLRP3 inflammasome.


2020 ◽  
Vol 48 (07) ◽  
pp. 1693-1713
Author(s):  
Zhichen Pu ◽  
Yanhao Liu ◽  
Chao Li ◽  
Moadi Xu ◽  
Haitang Xie ◽  
...  

Ulcerative colitis is a chronic and recurrent inflammatory bowel disease mediated by immune response. Geniposide is the main active ingredient extracted from Gardenia jasminoides, which has been suggested to exert excellent efficacy on inflammatory disease. Herein, in this study, we aimed to uncover the systematic understanding of the mechanism and effects of geniposide in ameliorating inflammatory responses in colitis. In brief, the TCMSP server and GEO DataSets were used to analyze the systematic understanding of the mechanism and effects of geniposide in ameliorating inflammatory responses in colitis. Dextran Sulfate Sodium (DSS)-induced acute colitis of mice were administered with 25–100[Formula: see text]mg/kg of geniposide for 7 days by gavage. Lipopolysaccharide (LPS)-induced Bone Marrow Derived Macrophage (BMDM) cell or RAW264.7 cell models were treated with 20, 50 and 100[Formula: see text][Formula: see text]M of geniposide for 4[Formula: see text]h. Myeloperoxidase (MPO) activity and Interleukin-1[Formula: see text] (IL-1[Formula: see text] levels were measured using MPO activity kits and IL-1[Formula: see text] levels enzyme-linked immunosorbent assay (ELISA) kits, respectively. Additionally, Western blot was used to determine the relevant protein expression. As a result, Geniposide could ameliorate inflammatory responses and prevent colitis in DSS-induced acute colitis of mice by activating AMP-activated protein kinase (AMPK)/Transcription 1 (Sirt1) dependent signaling via the suppression of nod-like receptor protein 3 (NLRP3) inflammasome. Geniposide attenuated macrophage differentiation in DSS-induced acute colitis of mice. Geniposide suppressed NLRP3 inflammasome and induced AMPK/Sirt1 signaling in LPS-induced BMDM cell or RAW264.7 cell models. In mechanism studies, the inhibition of AMPK/Sirt1 attenuated the anti-inflammatory effects of geniposide in colitis. The activation of NLRP3 attenuated the anti-inflammatory effects of geniposide in colitis. Taken together, our results demonstrated that geniposide ameliorated inflammatory responses in colitis vai the suppression of NLRP3 inflammasome in macrophages by AMPK/Sirt1-dependent signaling.


Author(s):  
Xin Wang ◽  
Yu Hu ◽  
Yaguang Wang ◽  
Dapeng Shen ◽  
Guizhou Tao

Increasing evidence has shown that NOD-like receptor protein 3 (NLRP3) inflammasome and pyroptotic cell death play vital roles in the pathophysiology of myocardial infarction (MI), a common cardiovascular disease characterized with cardiac dysfunction. C-type lectin member 5A (CLEC5A) is reported to strongly associate with activation of NLRP3 inflammasome and pyroptosis. In this study, in vivo MI model was established by the ligation of left anterior descending coronary artery on male C57BL/6 mice, and CLEC5A knockdown was further achieved by intra-myocardial injection of adenovirus delivering shRNA-CLEC5A. CLEC5A was found to be highly expressed in left ventricular of MI mice, while CLEC5A knockdown conversely alleviated the cardiac dysfunction in MI mice. Besides, MI-induced classical activation of macrophages was significantly inhibited after CLEC5A silencing. Additionally, CLEC5A knockdown dramatically inhibited MI-triggered activation of NLRP3 inflammasome, pyroptosis and NF-κB signaling in left ventricular of mice. In vitro experiment further validated that CLEC5A knockdown suppressed M1 polarization in LPS/IFNγ-stimulated RAW264.7 cells, and inhibited the polarized RAW264.7-induced activation of NLRP3 inflammasome/pyroptosis signaling in co-cultured cardiomyocytes. In conclusion, CLEC5A knockdown protects against the MI-induced cardiac dysfunction by regulating macrophage polarization, NLRP3 inflammasome and cell pyroptosis.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Dacheng Wu ◽  
Keyan Wu ◽  
Qingtian Zhu ◽  
Weiming Xiao ◽  
Qing Shan ◽  
...  

Formononetin is a kind of isoflavone compound and has been reported to possess anti-inflammatory properties. In this present study, we aimed to explore the protective effects of formononetin on dextran sulfate sodium- (DSS-) induced acute colitis. By intraperitoneal injection of formononetin in mice, the disease severity of colitis was attenuated in a dose-dependent manner, mainly manifesting as relieved clinical symptoms of colitis, mitigated colonic epithelial cell injury, and upregulations of colonic tight junction proteins levels (ZO-1, claudin-1, and occludin). Meanwhile, our study found that formononetin significantly prevented acute injury of colonic cells induced by TNF-α in vitro, specifically manifesting as the increased expressions of colonic tight junction proteins (ZO-1, claudin-1, and occludin). In addition, the result showed that formononetin could reduce the NLRP3 pathway protein levels (NLRP3, ASC, IL-1β) in vivo and vitro, and MCC950, the NLRP3 specific inhibitor, could alleviate the DSS-induced mice acute colitis. Furthermore, in the foundation of administrating MCC950 to inhibit activation of NLRP3 inflammasome, we failed to observe the protective effects of formononetin on acute colitis in mice. Collectively, our study for the first time confirmed the protective effects of formononetin on DSS-induced acute colitis via inhibiting the NLRP3 inflammasome pathway activation.


2016 ◽  
Vol 10 (5) ◽  
pp. 593-606 ◽  
Author(s):  
Bojana Simovic Markovic ◽  
Aleksandar Nikolic ◽  
Marina Gazdic ◽  
Sanja Bojic ◽  
Ljubica Vucicevic ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document