Using Network Pharmacology for Systematic Understanding of Geniposide in Ameliorating Inflammatory Responses in Colitis Through Suppression of NLRP3 Inflammasome in Macrophage by AMPK/Sirt1 Dependent Signaling

2020 ◽  
Vol 48 (07) ◽  
pp. 1693-1713
Author(s):  
Zhichen Pu ◽  
Yanhao Liu ◽  
Chao Li ◽  
Moadi Xu ◽  
Haitang Xie ◽  
...  

Ulcerative colitis is a chronic and recurrent inflammatory bowel disease mediated by immune response. Geniposide is the main active ingredient extracted from Gardenia jasminoides, which has been suggested to exert excellent efficacy on inflammatory disease. Herein, in this study, we aimed to uncover the systematic understanding of the mechanism and effects of geniposide in ameliorating inflammatory responses in colitis. In brief, the TCMSP server and GEO DataSets were used to analyze the systematic understanding of the mechanism and effects of geniposide in ameliorating inflammatory responses in colitis. Dextran Sulfate Sodium (DSS)-induced acute colitis of mice were administered with 25–100[Formula: see text]mg/kg of geniposide for 7 days by gavage. Lipopolysaccharide (LPS)-induced Bone Marrow Derived Macrophage (BMDM) cell or RAW264.7 cell models were treated with 20, 50 and 100[Formula: see text][Formula: see text]M of geniposide for 4[Formula: see text]h. Myeloperoxidase (MPO) activity and Interleukin-1[Formula: see text] (IL-1[Formula: see text] levels were measured using MPO activity kits and IL-1[Formula: see text] levels enzyme-linked immunosorbent assay (ELISA) kits, respectively. Additionally, Western blot was used to determine the relevant protein expression. As a result, Geniposide could ameliorate inflammatory responses and prevent colitis in DSS-induced acute colitis of mice by activating AMP-activated protein kinase (AMPK)/Transcription 1 (Sirt1) dependent signaling via the suppression of nod-like receptor protein 3 (NLRP3) inflammasome. Geniposide attenuated macrophage differentiation in DSS-induced acute colitis of mice. Geniposide suppressed NLRP3 inflammasome and induced AMPK/Sirt1 signaling in LPS-induced BMDM cell or RAW264.7 cell models. In mechanism studies, the inhibition of AMPK/Sirt1 attenuated the anti-inflammatory effects of geniposide in colitis. The activation of NLRP3 attenuated the anti-inflammatory effects of geniposide in colitis. Taken together, our results demonstrated that geniposide ameliorated inflammatory responses in colitis vai the suppression of NLRP3 inflammasome in macrophages by AMPK/Sirt1-dependent signaling.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yi Xin ◽  
Qin Yuan ◽  
Chaoqi Liu ◽  
Changcheng Zhang ◽  
Ding Yuan

Abstract It has been demonstrated that Chikusetsusaponin IVa (CsIVa) possesses abundant biological activities. Herein, using LPS to establish acute inflammation model of mouse liver and cell line inflammation model, we investigated whether miR-155/GSK-3β regulated NF-κB signaling pathway, and CsIVa exerted anti-inflammatory effects by regulating miR-155/GSK-3β signaling pathway. Our results showed that LPS induced high expression of miR-155 and miR-155 promoted macrophage activation through GSK-3β. In addition, CsIVa inhibited inflammatory responses in LPS-induced mouse liver and RAW264.7 cells. Furthermore, we demonstrated that CsIVa improved the inflammatory response in LPS-induced RAW264.7 cells by inhibiting miR-155, increasing GSK-3β expression, and inhibiting NF-κB signaling pathway. In conclusion, our study reveals that CsIVa suppresses LPS-triggered immune response by miR-155/GSK-3β-NF-κB signaling pathway.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Jing Zhao ◽  
Hong-liang Rui ◽  
Min Yang ◽  
Li-jun Sun ◽  
Hong-rui Dong ◽  
...  

Podocyte injury critically contributes to the pathogenesis of obesity-related glomerulopathy (ORG). Recently, lipid accumulation and inflammatory responses have been found to be involved in podocyte injury. This study is to explore their role and relationship in podocyte injury of ORG. In animal experiments, the ORG mice developed proteinuria, podocyte injury, and hypertriglyceridemia, accompanied with deregulated lipid metabolism, renal ectopic lipid deposition, activation of NOD-like receptor protein 3 (NLRP3) inflammasome, and secretion of IL-1β of the kidney. The expression of adipose differentiation-related protein (ADRP), CD36, sterol regulatory element-binding protein 1 (SREBP-1), and peroxisome proliferator-activated receptor α (PPARα) in renal tissue were increased. In in vitro cell experiments, after cultured podocytes were stimulated with leptin, similar to ORG mice, we found aggravated podocyte injury, formatted lipid droplet, increased expression of ADRP and CD36, activated NLRP3 inflammasome, and released IL-1β. In addition, after blocking CD36 with inhibitor sulfo-N-succinimidyl oleate (SSO) or CD36 siRNA, activation of NLRP3 inflammasome and release of IL-1β are downregulated, and podocyte injury was alleviated. However, after blocking NLRP3 with MCC950, although podocyte injury was alleviated and release of IL-1β was decreased, there was no change in the expression of CD36, ADRP, and intracellular lipid droplets. Taken together, our study suggests that CD36-mediated lipid accumulation and activation of NLRP3 inflammasome may be one of the potential pathogeneses of ORG podocyte injury.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 17-19
Author(s):  
Shuhui Li

Abstract Lipocalin 2 (Lcn2) is an essential component of the innate immune system and exerts significant immunomodulatory effects in vitro. The aim of current study was to investigate the expression profile of Lcn2 during inflammatory process and explore the role of Lcn2 in the anti-inflammatory responses. Western blot, real-time quantitative PCR, immunofluorescence (IF) and enzyme-linked immunosorbent assay (ELISA) were employed. Firstly, we evaluated the temporospatial expression of Lcn2 of mice after inflammatory stimuli by lipopolysaccharides (LPS). In vivo, LPS induced both mRNA and protein levels of Lcn2 significantly (P < 0.01) in liver, jejunum and ileum. Lcn2 exhibited a continuous increase by 8 h and peaked by 24 h post challenges. Secondly, we challenged Lcn2-deficient (Lcn2-/-) mice and wild-type (WT) mice with peripheral LPS and determined effects on inflammation. In contrast to WT mice, Lcn2-/- mice showed distinct inflammatory injury in liver, jejunum, ileum and spleen with significantly elevated pro-inflammatory cytokines interleukin-6 (IL-6) and interleukin-1b (IL-1b) and decreased anti-inflammatory cytokine interleukin-10 (IL-10). Thirdly, we isolated bone marrow-derived macrophages (BMDM) from Lcn2-/- mice and WT mice to evaluate their functions. After LPS challenge, Lcn2-/- BMDM showed aggravated inflammatory reaction as pro-inflammatory factors tumour necrosis factor-α (TNF-α), IL-6, IL-1b and inducible nitric oxide synthase (iNOS) increased (P < 0.05) while anti-inflammatory cytokines IL-10, transforming growth factor β1 (TGF-β1) and arginase-1(Arg-1) decreased significantly (P < 0.05) compared with WT BMDM. This phenomenon could be relieved when adding recombinant Lcn2 (P < 0.05). The exogenous addition of Lcn2 on mice RAW264.7 macrophages stimulated by LPS also conformed this point. These findings demonstrated that Lcn2 served as a potent protective factor in response to systemic inflammation, and elevated Lcn2 expression during inflammatory conditions was presumed to play an effective role in alleviating inflammatory responses.


2019 ◽  
Vol 14 (6) ◽  
pp. 574-591 ◽  
Author(s):  
Masoumeh Alishahi ◽  
Maryam Farzaneh ◽  
Farhoodeh Ghaedrahmati ◽  
Armin Nejabatdoust ◽  
Alireza Sarkaki ◽  
...  

Inflammation is a devastating pathophysiological process during stroke, a devastating disease that is the second most common cause of death worldwide. Activation of the NOD-like receptor protein (NLRP3)-infammasome has been proposed to mediate inflammatory responses during ischemic stroke. Briefly, NLRP3 inflammasome activates caspase-1, which cleaves both pro-IL-1 and pro-IL-18 into their active pro-inflammatory cytokines that are released into the extracellular environment. Several NLRP3 inflammasome inhibitors have been promoted, including small molecules, type I interferon, micro RNAs, nitric oxide, and nuclear factor erythroid-2 related factor 2 (Nrf2), some of which are potentially efficacious clinically. This review will describe the structure and cellular signaling pathways of the NLRP3 inflammasome during ischemic stroke, and current evidence for NLRP3 inflammasome inhibitors.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Chien-Chao Chiu ◽  
Yung-Hao Ching ◽  
Yu-Chih Wang ◽  
Ju-Yun Liu ◽  
Yen-Peng Li ◽  
...  

Ulcerative colitis is inflammatory conditions of the colon caused by interplay of genetic and environmental factors. Previous studies indicated that the gut microflora may be involved in the colonic inflammation.Bacteroides fragilis(BF) is a Gram-negative anaerobe belonging to the colonic symbiotic. We aimed to investigate the protective role ofBFin a colitis model induced in germ-free (GF) mice by dextran sulfate sodium (DSS). GF C57BL/6JNarl mice were colonized withBFfor 28 days before acute colitis was induced by DSS.BFcolonization significantly increased animal survival by 40%, with less reduction in colon length, and decreased infiltration of inflammatory cells (macrophages and neutrophils) in colon mucosa following challenge with DSS. In addition,BFcould enhance the mRNA expression of anti-inflammatory-related cytokine such as interleukin 10 (IL-10) with polymorphism cytokineIL-17and diminish that of proinflammatory-related tumor necrosis factorαwith inducible nitric oxide synthase in the ulcerated colon. Myeloperoxidase activity was also decreased inBF-DSS mice. Taking these together, theBFcolonization significantly ameliorated DSS-induced colitis by suppressing the activity of inflammatory-related molecules and inducing the production of anti-inflammatory cytokines.BFmay play an important role in maintaining intestinal immune system homeostasis and regulate inflammatory responses.


Author(s):  
Menglin He ◽  
Cheng Hu ◽  
Meijuan Chen ◽  
Qian Gao ◽  
Liqiu Li ◽  
...  

AbstractAcute gouty arthritis is a self-limiting inflammatory disease resulting from the deposition of monosodium urate (MSU) crystals. It has been shown that Gentiopicroside (GPS) possesses anti-inflammatory and analgesic functions. The aim of this study was to parse out whether GPS has an effect on acute gouty arthritis. We established an acute gouty arthritis model by the injection of MSU into the paw, and found that GPS relieves MSU-induced mechanical, thermal hyperalgesia, and paw swelling. Furthermore, GPS down-regulated the release of pro-inflammatory cytokines in paw tissues, including IL-1β, IL-6, IL-18, and TNF-α. The results of H&E staining and MPO activity measurement showed that GPS inhibits neutrophil infiltration. And the over-expressions of NOD-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and Caspase-1 induced by MSU were inhibited by treatment with GPS. These results revealed that GPS can treat acute gouty arthritis based on anti-inflammatory and analgesic properties in vivo, which might be ascribed to the inhibition on NLRP3 inflammasome. Furthermore, we performed in vitro study to confirm the results of in vivo study. Consistently, the results proved that GPS could inhibit the activation of NLRP3 inflammasome in RAW264.7 macrophages stimulated by LPS-MSU. In conclusion, this study provides an experimental basis for the application of GPS and expands the potential value of GPS in the therapy of acute gouty arthritis.


2020 ◽  
Vol 11 ◽  
Author(s):  
Ye Yu ◽  
Dong-Ming Wu ◽  
Jing Li ◽  
Shi-Hua Deng ◽  
Teng Liu ◽  
...  

Multiple sclerosis (MS), an autoimmune and degenerative disease, is characterized by demyelination and chronic neuroinflammation. Bixin is a carotenoid isolated from the seeds of Bixa orellana that exhibits various potent pharmacological activities, including antioxidant, anti-inflammatory, and anti-tumor properties. However, the effects of bixin on MS have not yet been examined. To evaluate the effects and underlying molecular mechanisms of bixin on MS, experimental autoimmune encephalomyelitis (EAE) was established in C57BL/6 mice, which were treated via intragastric administration of bixin solutions. To evaluate the molecular mechanisms of bixin, quantitative reverse-transcription PCR, western blot, immunohistochemistry, flow cytometry, and enzyme-linked immunosorbent assay analyses were performed. We found that bixin significantly improved the symptoms and pathology in EAE mice, reduced the release of inflammatory cytokines TNF-α, IL-6, IL-8, IL-17, and IFN-γ, and increased the expression of the anti-inflammatory cytokine IL-10. And bixin reduced the proportion of Th1 and Th17 cells in the spleen and CNS, and suppressed microglia aggregation, and TXNIP/NLRP3 inflammasome activity by scavenging excessive reactive oxygen species (ROS) in EAE mice. Furthermore, bixin inhibited inflammation and oxidative stress via activating nuclear factor erythroid 2-related factor 2 (NRF2), and its downstream genes in EAE mice, meanwhile, these effects were suppressed upon treatment with an NRF2 inhibitor, ML385. Bixin prevented neuroinflammation and demyelination in EAE mice primarily by scavenging ROS through activation of the NRF2 signaling pathway. Taken together, our results indicate that bixin is a promising therapeutic candidate for treatment of MS.


2019 ◽  
Vol 47 (07) ◽  
pp. 1611-1626 ◽  
Author(s):  
Wei-Hsiu Liu ◽  
Li-Shian Shi ◽  
Min-Chieh Chung ◽  
Tsu-Chung Chang ◽  
Shih-Yu Lee

The medicinal mushroom Antrodia cinnamomea has been demonstrated to have anti-inflammatory properties. However, the bioactive compounds in A. cinnamomea need further investigation. The present study aimed to understand the mechanism of action of antcamphin M, an ergostanoid isolated from A. cinnamomea mycelium and to clarify its underlying mechanisms of action. RAW264.7 cells were pretreated with the indicated concentrations of antcamphin M, prior to stimulation with lipopolysaccharide (LPS). Cell viability, production of nitric oxide (NO), prostaglandin E2 (PGE[Formula: see text], cytokines, and chemokines, as well as the inflammation-related signaling pathways were investigated. The study revealed that antcamphin M significantly decreased the LPS-induced production of NO, PGE2, pro-inflammatory cytokines, and keratinocyte chemoattractant CXCL1 (KC), along with the levels of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins without significant cytotoxicity, indicating it had a better anti-inflammatory activity than that of gisenoside Rb1 and Rg1. Additionally, antcamphin M significantly inhibited the activation of MAPKs (p38, ERK, and JNK), NF[Formula: see text]B, and components of the NLRP3 inflammasome (NLRP3, ASC, and caspase-1) signaling pathways and also increased the levels of nuclear factor erythroid-2-related factor (Nrf2) and heme oxygenase-1 (HO-1). These findings suggest that antcamphin M possesses potent anti-inflammatory activities and could be a potential candidate for the development of anti-inflammatory drugs.


2012 ◽  
Vol 215 (1) ◽  
pp. 89-96 ◽  
Author(s):  
Karolina Bäck ◽  
Rakibul Islam ◽  
Git S Johansson ◽  
Simona I Chisalita ◽  
Hans J Arnqvist

Diabetes is associated with microcirculatory dysfunction and heart failure and changes in insulin and IGF1 levels. Whether human cardiac microvascular endothelial cells (HMVEC-Cs) are sensitive to insulin and/or IGF1 is not known. We studied the role of insulin receptors (IRs) and IGF1 receptors (IGF1Rs) in metabolic, mitogenic and anti-inflammatory responses to insulin and IGF1 in HMVEC-Cs and human umbilical vein endothelial cells (HUVECs). IR and IGF1R gene expression was studied using real-time RT-PCR. Receptor protein expression and phosphorylation were determined by western blot and ELISA. Metabolic and mitogenic effects were measured as glucose accumulation and thymidine incorporation. An E-selectin ELISA was used to investigate inflammatory responses. According to gene expression and protein in HMVEC-Cs and HUVECs, IGF1R is more abundant than IR. Immunoprecipitation with anti-IGF1R antibody and immunoblotting with anti-IR antibody and vice versa, showed insulin/IGF1 hybrid receptors in HMVEC-Cs. IGF1 at a concentration of 10−8 mol/l significantly stimulated phosphorylation of both IGF1R and IR in HMVEC-Cs. In HUVECs IGF1 10−8 mol/l phosphorylated IGF1R. IGF1 stimulated DNA synthesis at 10−8 mol/l and glucose accumulation at 10−7 mol/l in HMVEC-Cs. TNF-α dramatically increased E-selectin expression, but no inflammatory or anti-inflammatory effects of insulin, IGF1 or high glucose were seen. We conclude that HMVEC-Cs express more IGF1Rs than IRs, and mainly react to IGF1 due to the predominance of IGF1Rs and insulin/IGF1 hybrid receptors. TNF-α has a pronounced pro-inflammatory effect in HMVEC-Cs, which is not counteracted by insulin or IGF1.


2020 ◽  
Author(s):  
Fengxia Guo ◽  
Bing Hu ◽  
Yanhua Sha ◽  
Kangning Zhu ◽  
Gang Li

Abstract BackgroundIncreasing evidence suggests that transcription factor EB (TFEB) inhibits inflammation in endothelial cell (ECs) and reduces development of atherosclerosis. However, little is known about the mechanism of action of TFEB on inflammation in atherosclerosis (AS).MethodsThe levels of TFEB, NLRP3, VCAM-1, ICAM-1, E-selectin, MCP-1, cleaved caspase-1, IL-1β and IL-18 in ECs were examined by immunoblotting, quantitative real time-polymerase chain reaction (qRT-PCR) , Enzyme-linked immunosorbent assay. The LDH activity were examined by LDH assay. TUNEL-positive cell were examined by TUNEL assay. The relationship between TFEB and NLRP3 were examined by immunofluorescence and coimmunoprecipitation. The effects of TFEB on atherosclerotic lesions by hematoxylin and eosin, TUNEL and collagen staining in the aortic valve of ApoE-/- mice fed a high fat diet (HFD).ResultsHere, we report that H2O2-induced cell pyroptosis and inflammatory response were mainly due to nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome activation. The nuclear protein TFEB was significantly increased by H2O2, and knockdown of TFEB aggravated cell pyroptosis and inflammatory response. TFEB directly bound to NLRP3 and blocked NLRP3-mediated cell pyroptosis and inflammatory response. The effect of H2O2 on TFEB might be associated with AMP-activated protein kinase/mechanistic target of rapamycin-dependent signaling pathways.ConclusionsOur findings indicated that a novel TFEB–NLRP3 axis was a critical regulator in EC pyroptosis and inflammation, which could be potential therapeutic targets in AS and related cardiovascular diseases.


Sign in / Sign up

Export Citation Format

Share Document