Hispidulin alleviates imiquimod-induced psoriasis-like skin inflammation by inhibiting splenic Th1/Th17 cell population and keratinocyte activation

2020 ◽  
Vol 87 ◽  
pp. 106767
Author(s):  
Namkyung Kim ◽  
Soyoung Lee ◽  
Jinjoo Kang ◽  
Young-Ae Choi ◽  
Byungheon Lee ◽  
...  
2020 ◽  
Vol 21 (9) ◽  
pp. 3230
Author(s):  
Hyun Jung Yoo ◽  
Won Chan Hwang ◽  
Do Sik Min

Phospholipase D1 (PLD1) plays a crucial role in various inflammatory and autoimmune diseases. Rheumatoid arthritis (RA) is a chronic and systemic autoimmune disease. However, the role of PLD1 in the pathogenesis of RA remains unknown. Here, we first investigated the role and effects of PLD1 in collagen-induced arthritis (CIA) and found that genetic and pharmacological inhibition of PLD1 in DBA1/J mice with CIA reduced the incidence of CIA, decreased the clinical score, and abrogated disease symptoms including infiltration of leukocytes, synovial inflammation, bone erosion, and cartilage destruction. Moreover, ablation and inhibition of PLD1 suppressed the production of type II collagen-specific IgG2a autoantibody and proinflammatory cytokines, accompanied by an increase in the regulatory T (Treg) cell population and a decrease in the Th17 cell population in CIA mice. The PLD1 inhibitor also promoted differentiation of Treg cells and suppressed differentiation of Th17 cells in vitro. Furthermore, the PLD1 inhibitor attenuated pathologic bone destruction in CIA mice by suppressing osteoclastogenesis and bone resorption. Thus, our findings indicate that the targeting of PLD1 can ameliorate CIA by modulating the imbalance of Treg and Th17 cells and suppressing osteoclastogenesis, which might be a novel strategy to treat autoimmune diseases, such as RA.


2012 ◽  
Vol 9 (1) ◽  
pp. 88 ◽  
Author(s):  
Crystal E Boudreaux ◽  
Lyndon B Chumbley ◽  
Veronica L Scott ◽  
Dwayne A Wise ◽  
Karen S Coats

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 446-446
Author(s):  
Rao H Prabhala ◽  
Dheeraj Pelluru ◽  
Mariateresa Fulciniti ◽  
Puru Nanjappa ◽  
Christine Pai ◽  
...  

Abstract Abstract 446 Waldenstrom's macroglobulinemia (WM), similar to multiple myeloma (MM), is associated with immune dysfunction. Both T and B cell dysfunctions are reported with suppressed uninvolved immunoglobulin, and inadequate vaccine and T cell responses. Although some mechanisms mediating immune dysregulation in WM have been studied, its molecular and cellular basis remains ill defined. Similarly, number of inflammatory cytokines and chemokines has been implicated in this process, but their effect on WM cell growth and immune function has not been well characterized. Recently, TH17 cells, a new CD4 cell population, has been identified by the presence of IL-17. TH17 cells play an important role in auto-immunity and in the development of anti-tumor immunity. As TH17 cells support MM cell growth and induce immune dysfunction in MM, we have evaluated the the role of TH17 cells and associated pro-inflammatory cytokines in WM. We first analyzed T helper cell subsets (TH1, TH2, and TH17) in freshly isolated PBMC from WM, and observed that all three cell types were decreased in WM compared with normal donors. Particularly, the IFN-γ producing TH1 cells from patients with WM were significantly reduced compared to normal donors (11±2% vs 30±3% respectively, P<0.01). However, unlike MM, IL-17 producing TH17 cell numbers were reduced in PBMC from WM patients (n=8) compared to PBMC from normal donors (n=8) and patients with MM (n=11), (1.5±0.5 vs 2.5±0.5% vs 4.50±0.8% respectively; p<0.05). Furthermore, when we polarized isolated naïve CD4 cells from WM patients using TH17 polarizing cocktail consisting of IL-6, IL-1β, IL-23 and TGF-β to induce TH17 cells differentiation, WM patients, unlike MM patients, showed significantly lower induction of TH17 cells in CD4 population compared to normal donor TH17 cells (0.3±0.1% WM; 11.9±2 % MM and 3.6±0.7% ND). Next, we evaluated the serum levels of cytokines and chemokines in sera from patients with WM in comparison with normal donors. The sera from WM patients showed significantly elevated levels of IL-2 (5 folds), IL-15 (2 folds) and GM-CSF (2 folds) among 19 cytokines, compared with sera from normal donors. When we evaluated TH17 cell-associated cytokines, both IL-1-beta (3 folds) and IL-17 (2 folds) were significantly elevated in sera from WM patients compared with sera from normal donors. In addition, we observed modulation of chemokines including, MCP-1, MIP-1, Eotaxin and RANTES in sera from WM patients. Finally, when we cultured WM cell-line in the presence or absence of IL-17 with or without stromal cells, we observed significant induction of WM cell proliferation by IL-17 and its inhibition by anti-IL17 antibody. These data shows that although similar to MM, there is immune dysfunction in WM, the mechanisms driving these effects especially cytokine milieu, and TH17 cell population are different between MM and WM. Disclosures: Treon: Millennium Pharmaceuticals, Genentech BiOncology, Biogen IDEC, Celgene, Novartis, Cephalon: Consultancy, Honoraria, Research Funding; Celgene Corporation: Research Funding; Novartis Corporation: Research Funding; Genentech: Consultancy, Research Funding. Munshi:Millennium Pharmaceuticals: Honoraria, Speakers Bureau.


2008 ◽  
Vol 127 ◽  
pp. S3
Author(s):  
Hakling Margery Ma ◽  
Spencer Liang ◽  
Jing Li ◽  
Lee Napierata ◽  
Tom Brown ◽  
...  

2021 ◽  
Vol 218 (12) ◽  
Author(s):  
Takahiro Nakajima ◽  
Toshio Kanno ◽  
Satoru Yokoyama ◽  
Shigemi Sasamoto ◽  
Hikari K. Asou ◽  
...  

T cells possess distinguishing effector functions and drive inflammatory disorders. We have previously identified IL-5–producing Th2 cells as the pathogenic population predominantly involved in the pathology of allergic inflammation. However, the cell-intrinsic signaling pathways that control the pathogenic Th2 cell function are still unclear. We herein report the high expression of acetyl-CoA carboxylase 1 (ACC1) in the pathogenic CD4+ T cell population in the lung and skin. The genetic deletion of CD4+ T cell–intrinsic ACC1 dampened eosinophilic and basophilic inflammation in the lung and skin by constraining IL-5 or IL-3 production. Mechanistically, ACC1-dependent fatty acid biosynthesis induces the pathogenic cytokine production of CD4+ T cells via metabolic reprogramming and the availability of acetyl-CoA for epigenetic regulation. We thus identified a distinct phenotype of the pathogenic T cell population in the lung and skin, and ACC1 was shown to be an essential regulator controlling the pathogenic function of these populations to promote type 2 inflammation.


2015 ◽  
Vol 3 ◽  
pp. 195-200 ◽  
Author(s):  
Renata Kopta ◽  
Marcin Mochocki ◽  
Piotr Morawski ◽  
Ewa Brzezińska-Błaszczyk ◽  
Iwona Lewy-Trenda ◽  
...  

2015 ◽  
Vol 43 (07) ◽  
pp. 1401-1417 ◽  
Author(s):  
Ming-Han Li ◽  
Hsin-Chieh Wu ◽  
Hsin-Jan Yao ◽  
Chi-Chen Lin ◽  
Shu-Fang Wen ◽  
...  

Antrodia cinnamomea (A. cinnamomea) is a Chinese medicinal herb that possesses a broad range of bioactivities, including anti-inflammation. Given that the proinflammatory cytokine IL-17 plays a critical role in the pathogenesis of autoimmune diseases, we investigated whether A. cinnamomea could inhibit the development of Th17 cells, the main producer of IL-17, and exhibit therapeutic effects on an animal model of psoriasis. We found that A. cinnamomea extract (AC) inhibited the differentiation of Th17 cells as well as the production of IL-17A, IL-21, and IL-22 from these cells. This effect was associated with the inhibition of STAT3 phosphorylation and ROR[Formula: see text]t expression. Notably, the oral administration of AC reduced psoriasis-like inflammation in imiquimod-mediated dermal damage, repressed the expression of IL-17A, IL-22, and TNF-[Formula: see text] in skin lesions, and decreased the infiltration of CD4[Formula: see text] T cells, CD8[Formula: see text] T cells, and neutrophils into the dermis. Finally, serum levels of IL-17A were decreased in AC-treated mice with psoriasis-like skin inflammation. Taken together, these findings indicate that AC inhibits Th17 cell differentiation, suggesting a role for A. cinnamomea in the treatment of psoriasis and other Th17 cell-mediated inflammatory diseases.


Sign in / Sign up

Export Citation Format

Share Document