ACC1-expressing pathogenic T helper 2 cell populations facilitate lung and skin inflammation in mice

2021 ◽  
Vol 218 (12) ◽  
Author(s):  
Takahiro Nakajima ◽  
Toshio Kanno ◽  
Satoru Yokoyama ◽  
Shigemi Sasamoto ◽  
Hikari K. Asou ◽  
...  

T cells possess distinguishing effector functions and drive inflammatory disorders. We have previously identified IL-5–producing Th2 cells as the pathogenic population predominantly involved in the pathology of allergic inflammation. However, the cell-intrinsic signaling pathways that control the pathogenic Th2 cell function are still unclear. We herein report the high expression of acetyl-CoA carboxylase 1 (ACC1) in the pathogenic CD4+ T cell population in the lung and skin. The genetic deletion of CD4+ T cell–intrinsic ACC1 dampened eosinophilic and basophilic inflammation in the lung and skin by constraining IL-5 or IL-3 production. Mechanistically, ACC1-dependent fatty acid biosynthesis induces the pathogenic cytokine production of CD4+ T cells via metabolic reprogramming and the availability of acetyl-CoA for epigenetic regulation. We thus identified a distinct phenotype of the pathogenic T cell population in the lung and skin, and ACC1 was shown to be an essential regulator controlling the pathogenic function of these populations to promote type 2 inflammation.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3032-3032
Author(s):  
Arantxa Romero-Toledo ◽  
Robin Sanderson ◽  
John G. Gribben

The complex crosstalk between malignant chronic lymphocytic leukemia (CLL) cells and the tumor microenvironment (TME) is not fully understood. CLL is associated with an inflammatory TME and T cells exhibit exhaustion and multiple functional defects, fully recapitulated in Eµ-TCL1 (TCL1) mice and induced in healthy mice by adoptive transfer (AT) of murine CLL cells, making it an ideal model to test novel immunotherapies for this disease. Myeloid-derived suppressor cells (MDSCs), a non-leukemic cell type within the TME, are immature myeloid cells with the ability to suppress T cell function and promote Treg expansion. In humans, CLL cells can induce conversion of monocytes to MDSCs provoking their accumulation in peripheral blood (PB). MDSCs include two major subsets granulocytic (Gr) and monocytic (M)-MDSC. In mice, Gr-MDSCs are defined as CD11b+Ly6G+Ly6Clo and M-MDSC as CD11b+Ly6G-Ly6Chi. Both murine and human MDSCs express BTK. We observed that in CLL-bearing mice, MDSCs cells are lost in PB as disease progresses. Treatment with both BTK inhibitors (BTKi), ibrutinib (Ibr) and acalabrutinib (Acala), result in shift of T cell function from Th2 towards Th1 polarity and increase MDSC populations in vivo. We aimed to determine whether combination treatment with BTKi and chimeric antigen receptor (CAR) T cells renders recovery of the MDSC population in CLL-bearing mice. To address this question we designed a two-part experiment, aiming to mimic the clinically relevant scenario of pre-treatment of CLL with BTKi to improve CAR T cell function. Part 1 of our experiment consisted of 4 groups (n=12) of 2.5 month old C57/Bl6 mice. Three groups had AT with 30x106 TCL1 splenocytes. A fourth group of WT mice remained CLL-free as a positive control and donors for WT T cells. When PB CLL load reached >10% (day 14) animals were randomized to either Ibr or Acala at 0.15 mg/l in 2% HPBC or no treatment for 21 days. All animals from part 1 were culled at day 35 post-AT and splenic cells were isolated, analyzed and used to manufacture CAR T cells. WT, CLL, Ibr and Acala treated T cells were activated and transduced with a CD19-CD28 CAR to treat mice in part 2. Here, 50 WT mice were given AT with 20x106 TCL1 splenocytes for CLL engraftment. All mice were injected with lymphodepleting cyclophosphamide (100mg/kg IP) one day prior to IV CAR injection. At day 21 post-AT, mice were treated with WT CAR, CLL CAR, IbrCAR, AcalaCAR or untransduced T cells. MDSC sub-populations were monitored weekly in PB and SP were analysed by flow cytometry. As malignant CD19+CD5+ cells expands in PB, the overall myeloid (CD19-CD11b+) cell population was not affected, but MDSCs significantly decreased (p<0.0001). Treatment with Acala, but not Ibr restores total MDSCs. However, MDSC impairment occurs in the Gr- but not M- MDSC population and both Acala and Ibr restores this population (Figure 1a). When we examined the spleen, treatment with both Ibr (p<0.001) and Acala (p<0.001) reduced CD5+CD19+ cells, whereas neither BTKi affected the overall myeloid (CD19-CD11b+) cell population. Gr-MDSCs were restored by both treatments whilst M-MDSCs were only restored after Ibr treatment (p<0.001 in each case). In part 2 of this experiment we observed that treatment with all CAR-T cell groups provokes the clearance of all CD19+CD5+ cells. The overall CD19-CD11b+ population stays the same across all mice groups 35 days after treatment in PB with any group of CAR and untransduced T cells. Overall MDSC population is maintained following all CAR T cells compared to CLL-bearing mice (p<0.0001) and it is the Gr- but not the M- MDSC population which is recovered in PB (Figure 1b). These parts of the experiments can of course be influenced by treatment with cyclophosphamide. We conclude that novel therapies for CLL treatment have an effect not only in CLL cells but also in non-malignant cell components of the TME. In this animal model of CLL, the rapid expansion of CLL cells in PB and secondary lymphoid organs provokes loss of MDSC, particularly the Gr-MDSC subpopulation is affected. Treatment with BTKi and CAR T cells provokes clearance of CLL cells in PB and spleen allowing MDSC recovery; suggesting this may be BTK and ITK independent. We continue to explore secondary lymphoid organs to further characterize the shift of the CLL microenvironment from an immunosuppressive to an immune effective one and its impact on immune function in this model. Disclosures Sanderson: Kite/Gilead: Honoraria. Gribben:Celgene: Consultancy, Honoraria, Research Funding; Janssen: Consultancy, Honoraria, Research Funding; Abbvie: Consultancy, Honoraria, Research Funding; Acerta/Astra Zeneca: Consultancy, Honoraria, Research Funding.


2021 ◽  
Vol 118 (37) ◽  
pp. e2103444118
Author(s):  
Felipe Valença-Pereira ◽  
Qian Fang ◽  
Isabelle J. Marié ◽  
Emily L. Giddings ◽  
Karen A. Fortner ◽  
...  

Interleukin 6 (IL-6) is known to regulate the CD4 T cell function by inducing gene expression of a number of cytokines through activation of Stat3 transcription factor. Here, we reveal that IL-6 strengthens the mechanics of CD4 T cells. The presence of IL-6 during activation of mouse and human CD4 T cells enhances their motility (random walk and exploratory spread), resulting in an increase in travel distance and higher velocity. This is an intrinsic effect of IL-6 on CD4 T-cell fitness that involves an increase in mitochondrial Ca2+. Although Stat3 transcriptional activity is dispensable for this process, IL-6 uses mitochondrial Stat3 to enhance mitochondrial Ca2+-mediated motility of CD4 T cells. Thus, through a noncanonical pathway, IL-6 can improve competitive fitness of CD4 T cells by facilitating cell motility. These results could lead to alternative therapeutic strategies for inflammatory diseases in which IL-6 plays a pathogenic role.


2009 ◽  
Vol 206 (10) ◽  
pp. 2111-2119 ◽  
Author(s):  
Ning Lu ◽  
Yi-Hong Wang ◽  
Yui-Hsi Wang ◽  
Kazuhiko Arima ◽  
Shino Hanabuchi ◽  
...  

Whether thymic stromal lymphopoietin (TSLP) directly induces potent human CD4+ T cell proliferation and Th2 differentiation is unknown. We report that resting and activated CD4+ T cells expressed high levels of IL-7 receptor a chain but very low levels of TSLP receptor (TSLPR) when compared with levels expressed in myeloid dendritic cells (mDCs). This was confirmed by immunohistology and flow cytometry analyses showing that only a subset of mDCs, with more activated phenotypes, expressed TSLPR in human tonsils in vivo. IL-7 induced strong STAT1, -3, and -5 activation and promoted the proliferation of naive CD4+ T cells in the presence of anti-CD3 and anti-CD28 monoclonal antibodies, whereas TSLP induced weak STAT5 activation, associated with marginally improved cell survival and proliferation, but failed to induce cell expansion and Th2 differentiation. The effect of TSLP on enhancing strong human T cell proliferation was observed only when sorted naive CD4+ T cells were cultured with mDCs at levels as low as 0.5%. TSLP could only induce naive CD4+ T cells to differentiate into Th2 cells in the presence of allogeneic mDCs. These results demonstrate that IL-7 and TSLP use different mechanisms to regulate human CD4+ T cell homeostasis.


2021 ◽  
Author(s):  
James Robert Byrnes ◽  
Amy M Weeks ◽  
Julia Carnevale ◽  
Eric Shifrut ◽  
Lisa Kirkemo ◽  
...  

Immunosuppressive factors in the tumor microenvironment (TME) impair T cell function and limit the anti-tumor immune response. T cell surface receptors that influence interactions and function in the TME are already proven targets for cancer immunotherapy. However, surface proteome remodeling of primary human T cells in response to suppressive forces in the TME has never been characterized systematically. Using a reductionist cell culture approach with primary human T cells and SILAC-based quantitative cell surface capture glycoproteomics, we examined how two immunosuppressive TME factors, regulatory T cells (Tregs) and hypoxia, globally affect the activated CD8+ surface proteome (surfaceome). Surprisingly, the CD8+/Treg co-culture only modestly affected the CD8+ surfaceome, but did reverse several activation-induced surfaceomic changes. In contrast, hypoxia dramatically altered the CD8+ surfaceome in a manner consistent with both metabolic reprogramming and induction of an immunosuppressed state. The CD4+ T cell surfaceome similarly responded to hypoxia, revealing a novel hypoxia-induced surface receptor program. Our findings are consistent with the premise that hypoxic environments create a metabolic challenge for T cell activation, which may underlie the difficulty encountered in treating solid tumors with immunotherapies. Together, the data presented here provide insight into how suppressive TME factors remodel the T cell surfaceome and represent a valuable resource to inform future therapeutic efforts to enhance T cell function in the TME.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2946-2946
Author(s):  
Scott R Best ◽  
Adam Kittai ◽  
Taylor Rowland ◽  
Nur Bruss ◽  
Stephen E Spurgeon ◽  
...  

Abstract Introduction: T cells from patients with CLL and lymphoma show highly impaired immune synapse formation, cytotoxic function, and adhesion and migration capabilities. Recent advances in immunooncology led to the emergence of therapeutic agents that permit reversal of T-cell exhaustion in cancer. However, rational development of novel combination approaches in immunotherapy requires detailed understanding of how targeted therapies influence T-cell function. We have shown that pevonedistat (TAK-924), an investigational NAE inhibitor, abrogates NFκB activation in CLL cells. Pevonedistat forms a covalent adduct with NEDD8, a ubiquitin-like modifier, thereby disrupting its interaction with NAE. This leads to reduced activity of Cullin-RING ligases (CRLs), a group of ubiquitin ligases that require modification by NEDD8 for their function. Ultimately, a decrease in CRL activity leads to reduced ubiquitination and proteasomal degradation of CRL substrates, extending the half-life of these proteins, including inhibitor of NFκB (IκB). Moreover, NFκB is critical in T-cell function. However, limited data exist on the effects of targeting neddylation on T-cell response. Here, we demonstrate that targeting neddylation in vitro preserves T-cell functionality and may lead to favorable T-cell population shifts in CLL. Methods: Peripheral blood mononuclear cells were isolated from patients with CLL (n=50), and T cells were purified using Dynabeads. Pevonedistat was obtained from Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited (Cambridge, MA). Results: In vitro T-cell receptor (TCR; CD3/CD28) stimulation induced T-cell activation and proliferation. Continuous treatment of T cells with pevonedistat led to rapid (2 hour) disruption of cullin neddylation, followed by a significant reduction in activity of NFκB and NFAT as assessed by immunoblotting and immunofluorescence. Despite this reduction, CD4 and CD8 T cells continued to respond to TCR stimulation, with relative abundance of early markers of activation (CD40L, CD69). However, we observed reduced expression of CD25 and PD-1 at 72 hours. Continuous treatment with pevonedistat led to a dose-dependent decrease in IL-2 secretion and reduced proliferation of the CD4 T-cell subset (CFSE, Ki-67) but did not induce apoptosis. Unlike CLL cells, CD4 T cells did not undergo DNA re-replication and G2/M arrest in response to pevonedistat. We further analyzed T-cell subsets following TCR stimulation. Concurrent treatment with pevonedistat led to an increase in IFNγ-secreting CD4 T cells, whereas IL-4 production decreased, suggesting a shift toward the Th1 phenotype. Furthermore, we observed a robust decrease of the iTreg population, accompanied by downregulation of FoxP3 mRNA and protein within the CD4 T-cell subset, indicating that targeting neddylation may help to reverse the immunosuppressive phenotype in CLL. To mimic the in vivo pharmacokinetics of pevonedistat, we performed drug washouts where CLL-derived T cells were exposed to 2-hour pulse treatment with 1 µM pevonedistat prior to TCR stimulation. Under these conditions, cullin neddylation and NFκB activity began to recover by 8 hours, with near complete recovery by 24 hours. Moreover, pevonedistat did not disrupt allogeneic (OCI-LY19 cells) or autologous (CD40L-stimulated CLL cells) T-cell cytotoxicity. Meanwhile, CD8 T cells continued to produce perforin and granzyme B. Conclusions: Our data suggest that pharmacologic targeting of NAE preserves T-cell cytotoxic function and may enhance anti-tumor immunity in CLL. Combined with our earlier reports that targeting NAE kills CLL cells under lymph node-mimicking conditions, these data provide a strong rationale for continued investigation of pevonedistat in CLL and lymphoid malignancies. Disclosures Spurgeon: Bristol Myers Squibb: Research Funding; Gilead Sciences, Inc.: Consultancy, Research Funding; Oncternal: Research Funding; Acerta: Research Funding; Genentech: Research Funding; Janssen: Research Funding; Pharmacyclics: Consultancy, Research Funding; MEI Pharma: Consultancy. Berger:Takeda Pharmaceuticals International Co.: Employment. Danilov:Gilead Sciences: Consultancy, Research Funding; Astra Zeneca: Consultancy; Verastem: Consultancy, Research Funding; Genentech: Consultancy, Research Funding; Aptose Biosciences: Research Funding; Takeda Oncology: Research Funding; TG Therapeutics: Consultancy; Bayer Oncology: Consultancy, Research Funding.


2021 ◽  
Vol 12 ◽  
Author(s):  
Christina P. Martins ◽  
Lee A. New ◽  
Erin C. O’Connor ◽  
Dana M. Previte ◽  
Kasey R. Cargill ◽  
...  

In Type 1 Diabetes (T1D), CD4+ T cells initiate autoimmune attack of pancreatic islet β cells. Importantly, bioenergetic programs dictate T cell function, with specific pathways required for progression through the T cell lifecycle. During activation, CD4+ T cells undergo metabolic reprogramming to the less efficient aerobic glycolysis, similarly to highly proliferative cancer cells. In an effort to limit tumor growth in cancer, use of glycolytic inhibitors have been successfully employed in preclinical and clinical studies. This strategy has also been utilized to suppress T cell responses in autoimmune diseases like Systemic Lupus Erythematosus (SLE), Multiple Sclerosis (MS), and Rheumatoid Arthritis (RA). However, modulating T cell metabolism in the context of T1D has remained an understudied therapeutic opportunity. In this study, we utilized the small molecule PFK15, a competitive inhibitor of the rate limiting glycolysis enzyme 6-phosphofructo-2-kinase/fructose-2,6- biphosphatase 3 (PFKFB3). Our results confirmed PFK15 inhibited glycolysis utilization by diabetogenic CD4+ T cells and reduced T cell responses to β cell antigen in vitro. In an adoptive transfer model of T1D, PFK15 treatment delayed diabetes onset, with 57% of animals remaining euglycemic at the end of the study period. Protection was due to induction of a hyporesponsive T cell phenotype, characterized by increased and sustained expression of the checkpoint molecules PD-1 and LAG-3 and downstream functional and metabolic exhaustion. Glycolysis inhibition terminally exhausted diabetogenic CD4+ T cells, which was irreversible through restimulation or checkpoint blockade in vitro and in vivo. In sum, our results demonstrate a novel therapeutic strategy to control aberrant T cell responses by exploiting the metabolic reprogramming of these cells during T1D. Moreover, the data presented here highlight a key role for nutrient availability in fueling T cell function and has implications in our understanding of T cell biology in chronic infection, cancer, and autoimmunity.


2017 ◽  
Vol 85 (10) ◽  
Author(s):  
Nicole V. Acuff ◽  
Xin Li ◽  
Krishna Latha ◽  
Tamas Nagy ◽  
Wendy T. Watford

ABSTRACT Tumor progression locus 2 (Tpl2) is a serine-threonine kinase that regulates Th1 differentiation, secretion of the inflammatory cytokine gamma interferon (IFN-γ), and host defense against the intracellular pathogens Toxoplasma gondii, Listeria monocytogenes, and Mycobacterium tuberculosis. However, relatively little is known about the contribution of Tpl2 to Th17 differentiation and immune cell function during infection with an extracellular pathogen. The goal of this study was to determine whether Tpl2 influences the immune response generated to the extracellular bacterium Citrobacter rodentium, which induces a mixed Th1 and Th17 response. During peak infection with C. rodentium, Tpl2 −/− mice experienced greater bacterial burdens with evidence of dissemination to the liver and spleen but ultimately cleared the bacteria within 3 weeks postinfection, similar to the findings for wild-type mice. Tpl2 −/− mice also recruited fewer neutrophils and monocytes to the colon during peak infection, which correlated with increased bacterial burdens. In mixed bone marrow chimeras, Tpl2 was shown to play a T cell-intrinsic role in promoting both IFN-γ and interleukin-17A production during infection with C. rodentium. However, upon CD4 T cell transfer into Rag −/− mice, Tpl2 −/− CD4 T cells were as protective as wild-type CD4 T cells against the dissemination of bacteria and mortality. These data indicate that the enhanced bacterial burdens in Tpl2 −/− mice are not caused primarily by impairments in CD4 T cell function but result from defects in innate immune cell recruitment and function.


2016 ◽  
Vol 130 (22) ◽  
pp. 2061-2071 ◽  
Author(s):  
Qing-Qing Wu ◽  
Yuan Yuan ◽  
Xiao-Han Jiang ◽  
Yang Xiao ◽  
Zheng Yang ◽  
...  

Global loss of OX40 aids in resisting pressure overload-induced cardiac remodelling. OX40 KO mice with reconstituted CD4+ T-lymphocytes presented deteriorated cardiac remodelling. OX40 alters the pathology of cardiac remodelling via the modulation of CD4+ T-cell function.


2013 ◽  
Vol 34 (5) ◽  
pp. 820-831 ◽  
Author(s):  
Sascha Kahlfuß ◽  
Narasimhulu Simma ◽  
Judith Mankiewicz ◽  
Tanima Bose ◽  
Theresa Lowinus ◽  
...  

N-Methyl-d-aspartate receptors (NMDARs) are ligand-gated ion channels that play an important role in neuronal development, plasticity, and excitotoxicity. NMDAR antagonists are neuroprotective in animal models of neuronal diseases, and the NMDAR open-channel blocker memantine is used to treat Alzheimer's disease. In view of the clinical application of these pharmaceuticals and the reported expression of NMDARs in immune cells, we analyzed the drug's effects on T-cell function. NMDAR antagonists inhibited antigen-specific T-cell proliferation and cytotoxicity of T cells and the migration of the cells toward chemokines. These activities correlated with a reduction in T-cell receptor (TCR)-induced Ca2+mobilization and nuclear localization of NFATc1, and they attenuated the activation of Erk1/2 and Akt. In the presence of antagonists, Th1 effector cells produced less interleukin-2 (IL-2) and gamma interferon (IFN-γ), whereas Th2 cells produced more IL-10 and IL-13. However, in NMDAR knockout mice, the presumptive expression of functional NMDARs in wild-type T cells was inconclusive. Instead, inhibition of NMDAR antagonists on the conductivity of Kv1.3 and KCa3.1 potassium channels was found. Hence, NMDAR antagonists are potent immunosuppressants with therapeutic potential in the treatment of immune diseases, but their effects on T cells have to be considered in that Kv1.3 and KCa3.1 channels are their major effectors.


2008 ◽  
Vol 205 (13) ◽  
pp. 3105-3117 ◽  
Author(s):  
Stephanie K. Lathrop ◽  
Nicole A. Santacruz ◽  
Dominic Pham ◽  
Jingqin Luo ◽  
Chyi-Song Hsieh

Although regulatory T (T reg) cells are thought to develop primarily in the thymus, the peripheral events that shape the protective T reg cell population are unclear. We analyzed the peripheral CD4+ T cell receptor (TCR) repertoire by cellular phenotype and location in mice with a fixed TCRβ chain. We found that T reg (Foxp3+) cells showed a marked skewing of TCR usage by anatomical location in a manner similar to antigen-experienced (CD44hiFoxp3−) but not naive (CD44loFoxp3−) cells, even though CD44hi and T reg cells used mostly dissimilar TCRs. This was likely unrelated to peripheral conversion, which we estimate generates only a small percentage of peripheral T reg cells in adults. Conversion was readily observed, however, during the immune response induced by Foxp3− cells in lymphopenic hosts. Interestingly, the converted Foxp3+ and expanded Foxp3− TCR repertoires were different, suggesting that generation of Foxp3+ cells is not an automatic process upon antigen activation of Foxp3− T cells. Retroviral expression of these TCRs in primary monoclonal T cells confirmed that conversion did not require prior cellular conditioning. Thus, these data demonstrate that TCR specificity plays a crucial role in the process of peripheral conversion and in shaping the peripheral T reg cell population to the local antigenic landscape.


Sign in / Sign up

Export Citation Format

Share Document