Finding a chain graph in a bipartite permutation graph

2016 ◽  
Vol 116 (9) ◽  
pp. 569-573 ◽  
Author(s):  
Masashi Kiyomi ◽  
Yota Otachi
2012 ◽  
Vol 04 (04) ◽  
pp. 1250050 ◽  
Author(s):  
B. S. PANDA ◽  
D. PRADHAN

A set M ⊆ E is called an acyclic matching of a graph G = (V, E) if no two edges in M are adjacent and the subgraph induced by the set of end vertices of the edges of M is acyclic. Given a positive integer k and a graph G = (V, E), the acyclic matching problem is to decide whether G has an acyclic matching of cardinality at least k. Goddard et al. (Discrete Math.293(1–3) (2005) 129–138) introduced the concept of the acyclic matching problem and proved that the acyclic matching problem is NP-complete for general graphs. In this paper, we propose an O(n + m) time algorithm to find a maximum cardinality acyclic matching in a chain graph having n vertices and m edges and obtain an expression for the number of maximum cardinality acyclic matchings in a chain graph. We also propose a dynamic programming-based O(n + m) time algorithm to find a maximum cardinality acyclic matching in a bipartite permutation graph having n vertices and m edges. Finally, we strengthen the complexity result of the acyclic matching problem by showing that this problem remains NP-complete for perfect elimination bipartite graphs.


2015 ◽  
Vol 61 (1) ◽  
pp. 101-108
Author(s):  
A.D. Akwu

Abstract In this paper we study strongly sum difference quotient labeling of some graphs that result from three different constructions. The first construction produces one- point union of graphs. The second construction produces chain graph, i.e., a concatenation of graphs. A chain graph will be strongly sum difference quotient graph if any graph in the chain, accepts strongly sum difference quotient labeling. The third construction is the corona product; strongly sum difference quotient labeling of corona graph is obtained.


Author(s):  
MILAN STUDENÝ

One of the most common ways of representing classes of equivalent Bayesian networks is the use of essential graphs which are also known in the literature as completed patterns or completed pdags. The name essential graph was proposed by Andersson, Madigan and Perlman who also gave a graphical characterization of essential graphs. In this paper an alternative characterization of essential graphs is presented. The main observation is that every essential graph is the largest chain graph within a special class of chain graphs. More precisely, every equivalence class of Bayesian networks is contained in an equivalence class of chain graphs without flags (= certain induced subgraphs). A special operation of legal merging of (connectivity) components for a chain graph without flags is introduced. This operation leads to an algorithm for finding the essential graph on the basis of any graph in that equivalence class of chain graphs without flags which contains the equivalence class of a Bayesian network. In particular, the algorithm may start with any Bayesian network.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Federico M. Stefanini

Bayesian networks are possibly the most successful graphical models to build decision support systems. Building the structure of large networks is still a challenging task, but Bayesian methods are particularly suited to exploit experts’ degree of belief in a quantitative way while learning the network structure from data. In this paper details are provided about how to build a prior distribution on the space of network structures by eliciting a chain graph model on structural reference features. Several structural features expected to be often useful during the elicitation are described. The statistical background needed to effectively use this approach is summarized, and some potential pitfalls are illustrated. Finally, a few seminal contributions from the literature are reformulated in terms of structural features.


Networks ◽  
1991 ◽  
Vol 21 (2) ◽  
pp. 133-163 ◽  
Author(s):  
Hanif D. Sherali ◽  
Thomas P. Rizzo
Keyword(s):  
A Chain ◽  

Author(s):  
H. Todokoro ◽  
S. Nomura ◽  
T. Komoda

It is interesting to observe polymers at atomic size resolution. Some works have been reported for thorium pyromellitate by using a STEM (1), or a CTEM (2,3). The results showed that this polymer forms a chain in which thorium atoms are arranged. However, the distance between adjacent thorium atoms varies over a wide range (0.4-1.3nm) according to the different authors.The present authors have also observed thorium pyromellitate specimens by means of a field emission STEM, described in reference 4. The specimen was prepared by placing a drop of thorium pyromellitate in 10-3 CH3OH solution onto an amorphous carbon film about 2nm thick. The dark field image is shown in Fig. 1A. Thorium atoms are clearly observed as regular atom rows having a spacing of 0.85nm. This lattice gradually deteriorated by successive observations. The image changed to granular structures, as shown in Fig. 1B, which was taken after four scanning frames.


Author(s):  
Eva-Maria Mandelkow ◽  
Ron Milligan

Microtubules form part of the cytoskeleton of eukaryotic cells. They are hollow libers of about 25 nm diameter made up of 13 protofilaments, each of which consists of a chain of heterodimers of α-and β-tubulin. Microtubules can be assembled in vitro at 37°C in the presence of GTP which is hydrolyzed during the reaction, and they are disassembled at 4°C. In contrast to most other polymers microtubules show the behavior of “dynamic instability”, i.e. they can switch between phases of growth and phases of shrinkage, even at an overall steady state [1]. In certain conditions an entire solution can be synchronized, leading to autonomous oscillations in the degree of assembly which can be observed by X-ray scattering (Fig. 1), light scattering, or electron microscopy [2-5]. In addition such solutions are capable of generating spontaneous spatial patterns [6].In an earlier study we have analyzed the structure of microtubules and their cold-induced disassembly by cryo-EM [7]. One result was that disassembly takes place by loss of protofilament fragments (tubulin oligomers) which fray apart at the microtubule ends. We also looked at microtubule oscillations by time-resolved X-ray scattering and proposed a reaction scheme [4] which involves a cyclic interconversion of tubulin, microtubules, and oligomers (Fig. 2). The present study was undertaken to answer two questions: (a) What is the nature of the oscillations as seen by time-resolved cryo-EM? (b) Do microtubules disassemble by fraying protofilament fragments during oscillations at 37°C?


2002 ◽  
Vol 16 (3) ◽  
pp. 129-149 ◽  
Author(s):  
Boris Kotchoubey

Abstract Most cognitive psychophysiological studies assume (1) that there is a chain of (partially overlapping) cognitive processes (processing stages, mechanisms, operators) leading from stimulus to response, and (2) that components of event-related brain potentials (ERPs) may be regarded as manifestations of these processing stages. What is usually discussed is which particular processing mechanisms are related to some particular component, but not whether such a relationship exists at all. Alternatively, from the point of view of noncognitive (e. g., “naturalistic”) theories of perception ERP components might be conceived of as correlates of extraction of the information from the experimental environment. In a series of experiments, the author attempted to separate these two accounts, i. e., internal variables like mental operations or cognitive parameters versus external variables like information content of stimulation. Whenever this separation could be performed, the latter factor proved to significantly affect ERP amplitudes, whereas the former did not. These data indicate that ERPs cannot be unequivocally linked to processing mechanisms postulated by cognitive models of perception. Therefore, they cannot be regarded as support for these models.


Sign in / Sign up

Export Citation Format

Share Document