scholarly journals Hierarchical clustering that takes advantage of both density-peak and density-connectivity

2022 ◽  
Vol 103 ◽  
pp. 101871
Author(s):  
Ye Zhu ◽  
Kai Ming Ting ◽  
Yuan Jin ◽  
Maia Angelova
2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Yaohui Liu ◽  
Dong Liu ◽  
Fang Yu ◽  
Zhengming Ma

Clustering is widely used in data analysis, and density-based methods are developed rapidly in the recent 10 years. Although the state-of-art density peak clustering algorithms are efficient and can detect arbitrary shape clusters, they are nonsphere type of centroid-based methods essentially. In this paper, a novel local density hierarchical clustering algorithm based on reverse nearest neighbors, RNN-LDH, is proposed. By constructing and using a reverse nearest neighbor graph, the extended core regions are found out as initial clusters. Then, a new local density metric is defined to calculate the density of each object; meanwhile, the density hierarchical relationships among the objects are built according to their densities and neighbor relations. Finally, each unclustered object is classified to one of the initial clusters or noise. Results of experiments on synthetic and real data sets show that RNN-LDH outperforms the current clustering methods based on density peak or reverse nearest neighbors.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Rong Zhou ◽  
Yong Zhang ◽  
Shengzhong Feng ◽  
Nurbol Luktarhan

Clustering aims to differentiate objects from different groups (clusters) by similarities or distances between pairs of objects. Numerous clustering algorithms have been proposed to investigate what factors constitute a cluster and how to efficiently find them. The clustering by fast search and find of density peak algorithm is proposed to intuitively determine cluster centers and assign points to corresponding partitions for complex datasets. This method incorporates simple structure due to the noniterative logic and less few parameters; however, the guidelines for parameter selection and center determination are not explicit. To tackle these problems, we propose an improved hierarchical clustering method HCDP aiming to represent the complex structure of the dataset. A k-nearest neighbor strategy is integrated to compute the local density of each point, avoiding to select the nonnecessary global parameter dc and enables cluster smoothing and condensing. In addition, a new clustering evaluation approach is also introduced to extract a “flat” and “optimal” partition solution from the structure by adaptively computing the clustering stability. The proposed approach is conducted on some applications with complex datasets, where the results demonstrate that the novel method outperforms its counterparts to a large extent.


2016 ◽  
Vol 373 ◽  
pp. 200-218 ◽  
Author(s):  
Ji Xu ◽  
Guoyin Wang ◽  
Weihui Deng

Author(s):  
Mohana Priya K ◽  
Pooja Ragavi S ◽  
Krishna Priya G

Clustering is the process of grouping objects into subsets that have meaning in the context of a particular problem. It does not rely on predefined classes. It is referred to as an unsupervised learning method because no information is provided about the "right answer" for any of the objects. Many clustering algorithms have been proposed and are used based on different applications. Sentence clustering is one of best clustering technique. Hierarchical Clustering Algorithm is applied for multiple levels for accuracy. For tagging purpose POS tagger, porter stemmer is used. WordNet dictionary is utilized for determining the similarity by invoking the Jiang Conrath and Cosine similarity measure. Grouping is performed with respect to the highest similarity measure value with a mean threshold. This paper incorporates many parameters for finding similarity between words. In order to identify the disambiguated words, the sense identification is performed for the adjectives and comparison is performed. semcor and machine learning datasets are employed. On comparing with previous results for WSD, our work has improvised a lot which gives a percentage of 91.2%


Author(s):  
D. Vallett ◽  
J. Gaudestad ◽  
C. Richardson

Abstract Magnetic current imaging (MCI) using superconducting quantum interference device (SQUID) and giant-magnetoresistive (GMR) sensors is an effective method for localizing defects and current paths [1]. The spatial resolution (and sensitivity) of MCI is improved significantly when the sensor is as close as possible to the current paths and associated magnetic fields of interest. This is accomplished in part by nondestructive removal of any intervening passive layers (e.g. silicon) in the sample. This paper will present a die backside contour-milling process resulting in an edge-to-edge remaining silicon thickness (RST) of < 5 microns, followed by a backside GMR-based MCI measurement performed directly on the ultra-thin silicon surface. The dramatic improvement in resolving current paths in an ESD protect circuit is shown as is nanometer scale resolution of a current density peak due to a power supply shortcircuit defect at the edge of a flip-chip packaged die.


Author(s):  
Alifia Puspaningrum ◽  
Nahya Nur ◽  
Ozzy Secio Riza ◽  
Agus Zainal Arifin

Automatic classification of tuna image needs a good segmentation as a main process. Tuna image is taken with textural background and the tuna’s shadow behind the object. This paper proposed a new weighted thresholding method for tuna image segmentation which adapts hierarchical clustering analysisand percentile method. The proposed method considering all part of the image and the several part of the image. It will be used to estimate the object which the proportion has been known. To detect the edge of tuna images, 2D Gabor filter has been implemented to the image. The result image then threshold which the value has been calculated by using HCA and percentile method. The mathematical morphologies are applied into threshold image. In the experimental result, the proposed method can improve the accuracy value up to 20.04%, sensitivity value up to 29.94%, and specificity value up to 17,23% compared to HCA. The result shows that the proposed method cansegment tuna images well and more accurate than hierarchical cluster analysis method.


Sign in / Sign up

Export Citation Format

Share Document