scholarly journals Obesity Reshapes Visceral Fat-Derived MHC I Associated-Immunopeptidomes and Generates Antigenic Peptides to Drive CD8+ T Cell Responses

iScience ◽  
2020 ◽  
Vol 23 (4) ◽  
pp. 100977 ◽  
Author(s):  
Xiaoling Chen ◽  
Shufeng Wang ◽  
Yi Huang ◽  
Xia Zhao ◽  
Xu Jia ◽  
...  
2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A444-A444
Author(s):  
Cathy Eng ◽  
Joaquina Baranda ◽  
Matthew Taylor ◽  
Michael Gordon ◽  
Ursula Matulonis ◽  
...  

BackgroundSQZ-PBMC-HPV is a therapeutic cancer vaccine created with Cell Squeeze®, a proprietary cell-engineering system. SQZ-PBMC-HPV is a novel cancer vaccine generated from peripheral blood mononuclear cells (PBMC) squeezed with HPV16 E6 and E7 antigens, resulting in delivery into the cytosol. The resulting antigen presenting cells (APCs) provide enhanced antigen presentation on MHC-I to potentially elicit robust, antigen-specific CD8+ T cell responses. Importantly, SQZ-PBMC-HPV are neither genetically modified nor immune effector cells.Studies in MHC-I knockout mice demonstrated that activation of antigen specific CD8+ tumor infiltrating lymphocytes (TILs) was a direct effect of cytosolic antigen delivery to PBMCs. In the murine TC-1 tumor model, tumor regression correlated with an influx of HPV16-specific CD8+ TILs. In vitro studies with human volunteer PBMCs demonstrated that each subset is capable of inducing CD8+ T cell responses. The Phase 1 study includes a significant biomarker program to investigate whether pharmacodynamic effects observed in non-clinical studies correlate with potential clinical benefit. Immunogenic and pharmacodynamic endpoints include Elispot assays to measure frequency of interferon gamma secreting cells, as well as quantification and characterization of TILs and tumor microenvironment. In addition, various cytokine responses and circulating cell-free HPV16 DNA levels in plasma are measured.MethodsSQZ-PBMC-HPV-101 (NCT04084951) is open for enrollment to HLA A*02+ patients with HPV16+ recurrent, locally advanced or metastatic solid tumors and includes escalation cohorts for monotherapy and in combination with atezolizumab. After initial demonstration of safety, the study assesses dose effect by testing different cell dose levels, the effect of prolonged antigen priming in Cycle 1 [APC administration on Day 1 only compared to Days 1 and 2 (double priming)] and the impact of treatment duration to identify the optimal dose regimen. The cycle length is 3 weeks, and patients will receive SQZ-PBMC-HPV for up to 1 year or until available autologous drug product is exhausted. Atezolizumab will be administered for up to 1 year. Eligible patients including but not limited to anal, cervical and head and neck tumors will undergo a single leukapheresis at the study site. The manufacturing process includes a maturation step and takes less than 24 hours. The vein-to-vein time for the 1st administration is approximately one week. Patients must have a lesion that can be biopsied with acceptable clinical risk and agree to have a fresh biopsy at Screening and on study. A Study Safety Committee is in place. No formal statistical hypothesis testing will be performed.ResultsN/AConclusionsN/ATrial RegistrationNCT04084951Ethics ApprovalThe study is registered on clinicaltrials.gov was approved by the Ethics Board of all institution listed as recruiting.


Oncogene ◽  
2019 ◽  
Vol 38 (46) ◽  
pp. 7166-7180 ◽  
Author(s):  
Joseph A. Westrich ◽  
Daniel W. Vermeer ◽  
Alexa Silva ◽  
Stephanie Bonney ◽  
Jennifer N. Berger ◽  
...  

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A614-A614
Author(s):  
Natalie Wolf ◽  
Cristina Blaj ◽  
Lora Picton ◽  
Gail Snyder ◽  
Li Zhang ◽  
...  

BackgroundMost current cancer immunotherapies are based on mobilizing CD8 T cell responses. However, many types of tumors evade CD8 T cell recognition by displaying few or no antigens, or losing expression of MHC I. These considerations underlie the need for complementary therapies that mobilize other antitumor effector cells, such as NK cells, which preferentially kill MHC I-deficient cells. Cyclic dinucleotides (CDNs) activate the cGAS-STING pathway of the innate immune system and are candidates as immunotherapy agents. Intratumoral CDN injections induce type I IFNs and other mediators that amplify the CD8 T cell response and induce tumor regression [1]. CDN therapy also induces long-term tumor regressions in some MHC I-deficient tumor models, mediated primarily by NK cells [2].MethodsTo extend the efficacy of CDN therapy, we combined the IL-2 superkine, H9, or half-life extended H9, with CDNs to target and activate NK cells in the tumor microenvironment and prevent or delay the onset of NK cell desensitization [3,4]. In these studies, we utilized B16-F10 and MC38 tumor cells lacking B2m to examine effects of the combination therapy on MHC I-deficient tumor growth as well as to examine the activation of NK cells by flow cytometry and cytotoxicity assays. We also utilized B16-F10 WT and the spontaneous tumor model, MCA, to assess the effect of the combination therapy on MHC I+ tumors.ResultsHere we show that H9 synergized with CDN therapy to mobilize much more powerful antitumor responses against MHC I-deficient tumors than CDN alone. The responses were mediated by NK cells and in some cases CD4 T cells, and were accompanied by increased recruitment to and sustained activation of NK cells in the tumor. This combination therapy regimen activated NK cells systemically, as shown by antitumor effects distant from the site of CDN injection and enhanced cytolytic activity of splenic NK cells against tumor cell targets ex vivo. Finally, the same combination therapy regimen synergistically mobilized powerful CD8 T cell responses in the case of MHC I+ tumor cells, suggesting the generality of the approach. The approach was effective against primary sarcomas, as well, especially when combined with checkpoint therapy, leading to tumor regressions and long-term survival of many mice with MCA-induced sarcoma.ConclusionsOverall, our work demonstrates the impact of a novel combination therapy in mobilizing powerful NK and T cell-mediated antitumor activity, providing important justification for evaluating this approach for treating cancers that are refractory to available treatment options.ReferencesCorrales, L., Glickman, L.H., McWhirter, S.M., Kanne, D.B., Sivick, K.E., Katibah, G.E., Woo, S.R., Lemmens, E., Banda, T., Leong, J.J., et al. (2015). Direct Activation of STING in the Tumor Microenvironment Leads to Potent and Systemic Tumor Regression and Immunity. Cell Rep 11, 1018–1030.Nicolai, C.J., Wolf, N., Chang, I.C., Kirn, G., Marcus, A., Ndubaku, C.O., McWhirter, S.M., and Raulet, D.H. (2020). NK cells mediate clearance of CD8(+) T cell-resistant tumors in response to STING agonists. Science immunology 5, eaaz2738.Levin, A.M., Bates, D.L., Ring, A.M., Krieg, C., Lin, J.T., Su, L., Moraga, I., Raeber, M.E., Bowman, G.R., Novick, P., et al. (2012). Exploiting a natural conformational switch to engineer an interleukin-2 ‘superkine’. Nature 484, 529–533.Ardolino, M., Azimi, C.S., Iannello, A., Trevino, T.N., Horan, L., Zhang, L., Deng, W., Ring, A.M., Fischer, S., Garcia, K.C., and Raulet, D.H. (2014). Cytokine therapy reverses NK cell anergy in MHC-deficient tumors. J Clin Invest 124, 4781–4794.


Author(s):  
Yang Wang ◽  
Alexandra Tsitsiklis ◽  
Wei Gao ◽  
H. Hamlet Chu ◽  
Yan Zhang ◽  
...  

AbstractCertain CD8 T cell responses are particularly effective at controlling infection, as exemplified by elite control of HIV in individuals harboring HLA-B57. To understand the structural features that contribute to CD8 T cell elite control, we focused on a strongly protective CD8 T cell response directed against a parasite-derived peptide (HF10) presented by an atypical MHC-I molecule, H-2Ld. This response exhibits a focused TCR repertoire dominated by Vβ2, and a representative TCR (TG6) in complex with Ld-HF10 reveals an unusual structure in which both MHC and TCR contribute extensively to peptide specificity, along with a parallel footprint of TCR on its pMHC ligand. The parallel footprint is a common feature of Vβ2-containing TCRs and correlates with an unusual Vα-Vβ interface, CDR loop conformations, and Vβ2-specific germline contacts with peptide. Vβ2 and Ld may represent “specialist” components for antigen recognition that allow for particularly strong and focused T cell responses.


2019 ◽  
Vol 18 (6) ◽  
pp. 2666-2675 ◽  
Author(s):  
J. Patrick Murphy ◽  
Youra Kim ◽  
Derek R. Clements ◽  
Prathyusha Konda ◽  
Heiko Schuster ◽  
...  

2017 ◽  
Vol 214 (7) ◽  
pp. 1889-1899 ◽  
Author(s):  
Susan E. Murray ◽  
Pavlo A. Nesterenko ◽  
Adam L. Vanarsdall ◽  
Michael W. Munks ◽  
Savannah M. Smart ◽  
...  

Cytomegalovirus (CMV)-based vaccines have shown remarkable efficacy in the rhesus macaque model of acquired immune deficiency syndrome, enabling 50% of vaccinated monkeys to clear a subsequent virulent simian immunodeficiency virus challenge. The protective vaccine elicited unconventional CD8 T cell responses that were entirely restricted by MHC II or the nonclassical MHC I molecule, MHC-E. These unconventional responses were only elicited by a fibroblast-adapted rhesus CMV vector with limited tissue tropism; a repaired vector with normal tropism elicited conventional responses. Testing whether these unusual protective CD8 T responses could be elicited in humans requires vaccinating human subjects with a fibroblast-adapted mutant of human CMV (HCMV). In this study, we describe the CD8 T cell responses of human subjects vaccinated with two fibroblast-adapted HCMV vaccines. Most responses were identified as conventional classically MHC I restricted, and we found no evidence for MHC II or HLA-E restriction. These results indicate that fibroblast adaptation alone is unlikely to explain the unconventional responses observed in macaques.


Blood ◽  
2008 ◽  
Vol 111 (1) ◽  
pp. 236-242 ◽  
Author(s):  
Katayoun Rezvani ◽  
Agnes S. M. Yong ◽  
Stephan Mielke ◽  
Bipin N. Savani ◽  
Laura Musse ◽  
...  

We describe the safety and immunogenicity of a combined vaccine of 2 leukemia-associated antigenic peptides, PR1 and WT1. Eight patients with myeloid malignancies received one subcutaneous dose each of PR1 and WT1 vaccines in Montanide adjuvant, with granulocyte-macrophage colony-stimulating factor. Patients were reviewed weekly for 4 weeks to monitor toxicity and immunologic responses. Toxicity was limited to grades 1 to 2. Using peptide/HLA-A*0201 tetramers and intracellular interferon-γ staining, CD8+ T cells against PR1 or WT1 were detected in 8 of 8 patients after a single vaccination. To monitor the kinetics of vaccine-induced CD8+ T-cell responses and disease regression after vaccination, absolute PR1 and WT1+CD8+ T-cell numbers and WT1 expression were studied weekly after vaccination. Responses occurred as early as 1 week after vaccination. After vaccination, the emergence of PR1 or WT1+CD8+ T cells was associated with a decrease in WT1 mRNA expression as a marker of minimal residual disease, suggesting a vaccine-driven antileukemia effect. Conversely, loss of response was associated with reappearance of WT1 transcripts (P < .01). This is the first demonstration that a combined PR1 and WT1 vaccine is immunogenic. These results support further studies of combination immunization strategies in leukemia patients. This study is registered at http://clinicaltrials.gov as NCT00313638.


PLoS ONE ◽  
2013 ◽  
Vol 8 (1) ◽  
pp. e54300 ◽  
Author(s):  
Naofumi Takahashi ◽  
Takushi Nomura ◽  
Yusuke Takahara ◽  
Hiroyuki Yamamoto ◽  
Teiichiro Shiino ◽  
...  

2012 ◽  
Vol 15 (4) ◽  
pp. 487-502 ◽  
Author(s):  
Paula Barrionuevo ◽  
M. Victoria Delpino ◽  
Roberto G. Pozner ◽  
Lis N. Velásquez ◽  
Juliana Cassataro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document