scholarly journals The gut microbiota modulates brain network connectivity under physiological conditions and after acute brain ischemia

iScience ◽  
2021 ◽  
pp. 103095
Author(s):  
Markus Aswendt ◽  
Claudia Green ◽  
Rebecca Sadler ◽  
Gemma Llovera ◽  
Lauren Dzikowski ◽  
...  
2020 ◽  
Author(s):  
N. Kohn ◽  
J. Szopinska-Tokov ◽  
A. Llera ◽  
C. Beckmann ◽  
A. Arias Vasquez ◽  
...  

AbstractResearch on the gut-brain axis has accelerated substantially over the course of the last years. Many reviews have outlined the important implications of understanding the relation of the gut microbiota with human brain function and behavior. One substantial drawback in integrating gut microbiome and brain data is the lack of integrative multivariate approaches that enable capturing variance in both modalities simultaneously. To address this issue, we applied a linked independent component analysis (LICA) to microbiota and brain connectivity data.We analyzed data from 58 healthy females (mean age = 21.5 years). Magnetic Resonance Imaging data were acquired using resting state functional imaging data. The assessment of gut microbial composition from feces was based on sequencing of the V4 16S rRNA gene region. We used the LICA model to simultaneously factorize the subjects’ large-scale brain networks and microbiome relative abundance data into 10 independent components of spatial and abundance variation.LICA decomposition resulted in four components with non-marginal contribution of the microbiota data. The default mode network featured strongly in three components, whereas the two-lateralized fronto-parietal attention networks contributed to one component. The executive-control (with the default mode) network was associated to another component. We found the abundance of Prevotella genus was associated to the strength of expression of all networks, whereas Bifidobacterium was associated with the default mode and frontoparietal-attention networks.We provide the first exploratory evidence for multivariate associative patterns between the gut microbiota and brain network connectivity in healthy humans, taking into account the complexity of both systems.


Gut Microbes ◽  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
N. Kohn ◽  
J. Szopinska-Tokov ◽  
A. Llera Arenas ◽  
C.F. Beckmann ◽  
A. Arias-Vasquez ◽  
...  

Author(s):  
Moriah E. Thomason ◽  
Ava C. Palopoli ◽  
Nicki N. Jariwala ◽  
Denise M. Werchan ◽  
Alan Chen ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Peng Li ◽  
Teng-Teng Fan ◽  
Rong-Jiang Zhao ◽  
Ying Han ◽  
Le Shi ◽  
...  

2020 ◽  
Author(s):  
Xiangyun Long ◽  
Jiaxin Wu ◽  
Fei Liu ◽  
Ansi Qi ◽  
Nan Huang ◽  
...  

Abstract Childhood trauma is a central risk factor for schizophrenia. We explored the correlation between early traumatic experiences and the functional connectivity of resting-state networks. This fMRI study included 28 first-episode schizophrenia patients and 27 healthy controls. In first-episode schizophrenia patients, higher levels of childhood trauma associated with abnormal connections of resting-state networks, and these anomalies distributed among task-positive networks (i.e., ventral attention network, dorsal-ventral attention network and frontal-parietal network), and sensory networks (i.e., visual network and auditory network). These findings mentioned that childhood traumatic experiences may impact resting-state network connectivity in adulthood, mainly involving systems related to attention and execution control.


2019 ◽  
Vol 45 (6) ◽  
pp. 1279-1290 ◽  
Author(s):  
Minji Bang ◽  
Jee In Kang ◽  
Se Joo Kim ◽  
Jin Young Park ◽  
Kyung Ran Kim ◽  
...  

Abstract Negative symptoms are recognized as a fundamental feature of schizophrenia throughout the disease course. Epigenetic alterations in the oxytocin receptor gene (OXTR) may be a key mechanism involved in social-emotional disturbances of schizophrenia. Here, we investigated OXTR methylation and its association with clinical and brain network connectivity phenotypes of negative symptoms, particularly anhedonia-asociality, in individuals with recent-onset schizophrenia (ROS) and at ultrahigh risk (UHR) for psychosis. Sixty-four ROS (39 women), 46 UHR (19 women), and 98 healthy individuals (52 women) participated in this study. OXTR methylation was quantified using the pyrosequencing method. A subset of participants (16 ROS, 23 UHR, and 33 healthy controls [HCs]) underwent a 5.5-minute resting-state functional magnetic resonance imaging to determine the relationship between OXTR methylation and the striatal-amygdala network functional connectivity (FC) underlying anhedonia-asociality. Both men and women with ROS and UHR showed significantly decreased OXTR methylation compared to HCs. In women with ROS and UHR, decreased OXTR methylation showed a significant correlation with increased anhedonia-asociality. FC of the striatal-amygdala network, positively associated with the severity of anhedonia-asociality, showed an inverse correlation with OXTR methylation. This study suggests that epigenetic alterations of OXTR, which can be detected before the development of full-blown psychosis, confer susceptibility to schizophrenia and play a crucial role in the manifestation of anhedonia-asociality, particularly in women.


Sign in / Sign up

Export Citation Format

Share Document