Laboratory investigation of pull-out capacity of chemical anchors in individual new and vintage masonry units under quasi-static, cyclic and impact load

Structures ◽  
2021 ◽  
Vol 34 ◽  
pp. 901-930
Author(s):  
C. Burton ◽  
P. Visintin ◽  
M. Griffith ◽  
J. Vaculik
2011 ◽  
Vol 117-119 ◽  
pp. 849-857
Author(s):  
Rui Xiang Bai ◽  
Liang Wang

The interfacial reinforcement with interlaminar chopped fibers of piezoelectric composite under impact electro-mechanical load was studied using nonlinear finite element method. A meso- mechanical model based on the main toughness reinforcement mechanism of single fiber bridging and pull out was adopted, and then a tri-linear bridging law was obtained, while the interface chopped fibers by defining nonlinear bidirectional spring elements between coincident nodes on the two crack surfaces within bridging zone and the energy release rate was calculated using the virtual crack closure technique. The numerical investigation indicates that the interlaminar chopped fiber can effectively reduce the crack tip energy release rate whether the applied voltage is positive or negative, which was an effective technique improve the interfacial toughness of the piezoelectric composite adhesive structure.


2020 ◽  
pp. 004051752096672
Author(s):  
Yi Zhou ◽  
Hang Li ◽  
Ziming Xiong ◽  
Zhongwei Zhang ◽  
Zhongmin Deng

This paper investigates the penetration and energy absorption mechanisms of ultra-high-molecular-weight polyethylene plain weaves with different fabric properties. Impact tests along with finite element (FE) analysis were used to study the impact response of the fabrics. In this research, the impacting projectile did not cause any fiber or yarn failure on the samples. It was found that structural parameters determine the yarn pull-out behavior and the softness of the resultant fabrics. Fabrics formed by loosely interlaced yarns tend to exhibit higher softness and less resistance against yarn pull-out. When the projectile velocity is not sufficient to initiate yarn pull-out, material softness determines the depth of the backface signature on the clay witness. This trend is more pronounced in a multi-ply fabric system than in a single-ply system; when yarn pull-out occurs, the projectile-slowing mechanism depends on the frictional force between the warp and weft yarns. Therefore, fabric softness becomes less important, and the yarn pull-out behavior of the fabric plays a predominant role in energy absorption. FE prediction showed that tightly woven fabrics exhibit a larger area of stress distribution and material deformation than those with severe yarn pull-out and, consequently, these tight fabrics tend to absorb more kinetic energy and sustain higher impact load from a projectile.


2011 ◽  
Vol 41 (3) ◽  
pp. 201-221 ◽  
Author(s):  
Kadir Bilisik

The aim of this study was to determine the pull-out properties of the para-aramid woven fabrics. Para-aramid Kevlar 29® (K29) and Kevlar 129® (K129) woven fabrics were used to conduct the pull-out tests. K29 and K129 woven fabrics had high and low fabric densities, respectively. For this reason, yarn pull-out fixture was developed to test various K29 and K129 fabric sample dimensions. Data generated from single and multiple yarn pull-out tests in various dimensions of K29 and K129 woven fabrics included fabric pull-out forces, yarn crimp extensions in the fabrics, and fabric displacements. Yarn pull-out forces depended on fabric density, fabric sample dimensions, and the number of pulled ends in the fabric. Multiple yarn pull-out force was higher than single yarn pull-out force. Single- and multiple-yarn pull-out forces in K29 (tight fabric) were higher than those of K129 (loose fabric). Yarn crimp extension in K29 and K129 fabrics depended on crimp ratio in the fabrics and fabric density. High crimp ratio fabrics showed high yarn crimp extension compared to that of the low crimp ratio fabrics. Long fabric samples also showed high yarn crimp extension compared to that of the short fabrics. Fabric displacement in K29 and K129 fabrics depended on fabric sample dimensions and the number of pulled yarns. Long fabric samples showed high fabric displacement compared to that of short fabric samples. Fabric displacement from multiple yarn pull-out test was also higher than that of the single yarn pull-out test. It was considered that fabric pull-out properties can play important roles for absorption of impact load due to the yarn frictions in the fabric structures.


Author(s):  
E. Bischoff ◽  
O. Sbaizero

Fiber or whisker reinforced ceramics show improved toughness and strength. Bridging by intact fibers in the crack wake and fiber pull-out after failure contribute to the additional toughness. These processes are strongly influenced by the sliding and debonding resistance of the interfacial region. The present study examines the interface in a laminated 0/90 composite consisting of SiC (Nicalon) fibers in a lithium-aluminum-silicate (LAS) glass-ceramic matrix. The material shows systematic changes in sliding resistance upon heat treatment.As-processed samples were annealed in air at 800 °C for 2, 4, 8, 16 and 100 h, and for comparison, in helium at 800 °C for 4 h. TEM specimen preparation of as processed and annealed material was performed with special care by cutting along directions having the fibers normal and parallel to the section plane, ultrasonic drilling, dimpling to 100 pm and final ionthinning. The specimen were lightly coated with Carbon and examined in an analytical TEM operated at 200 kV.


Author(s):  
K.L. More ◽  
R.A. Lowden

The mechanical properties of fiber-reinforced composites are directly related to the nature of the fiber-matrix bond. Fracture toughness is improved when debonding, crack deflection, and fiber pull-out occur which in turn depend on a weak interfacial bond. The interfacial characteristics of fiber-reinforced ceramics can be altered by applying thin coatings to the fibers prior to composite fabrication. In a previous study, Lowden and co-workers coated Nicalon fibers (Nippon Carbon Company) with silicon and carbon prior to chemical vapor infiltration with SiC and determined the influence of interfacial frictional stress on fracture phenomena. They found that the silicon-coated Nicalon fiber-reinforced SiC had low flexure strengths and brittle fracture whereas the composites containing carbon coated fibers exhibited improved strength and fracture toughness. In this study, coatings of boron or BN were applied to Nicalon fibers via chemical vapor deposition (CVD) and the fibers were subsequently incorporated in a SiC matrix. The fiber-matrix interfaces were characterized using transmission and scanning electron microscopy (TEM and SEM). Mechanical properties were determined and compared to those obtained for uncoated Nicalon fiber-reinforced SiC.


Author(s):  
G. McMahon ◽  
T. Malis

As with all techniques which are relatively new and therefore underutilized, diamond knife sectioning in the physical sciences continues to see both developments of the technique and novel applications.Technique Developments Development of specific orientation/embedding procedures for small pieces of awkward shape is exemplified by the work of Bradley et al on large, rather fragile particles of nuclear waste glass. At the same time, the frequent problem of pullout with large particles can be reduced by roughening of the particle surface, and a proven methodology using a commercial coupling agent developed for glasses has been utilized with good results on large zeolite catalysts. The same principle (using acid etches) should work for ceramic fibres or metal wires which may only partially pull out but result in unacceptably thick sections. Researchers from the life sciences continue to develop aspects of embedding media which may be applicable to certain cases in the physical sciences.


2018 ◽  
Vol 1 (1) ◽  
pp. 30-42
Author(s):  
Muataz Ali ◽  
◽  
Yaseen Saleh ◽  
Luna Al Hasani ◽  
Ammar Khazaal ◽  
...  
Keyword(s):  
Rc Beams ◽  

10.1617/13472 ◽  
2005 ◽  
Vol 35 (251) ◽  
Author(s):  
P. Robins
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document