Theoretical evaluation of the equivalent torsional rigidity of a unique GFRP-metal box-truss composite girder

Structures ◽  
2022 ◽  
Vol 36 ◽  
pp. 781-792
Author(s):  
Dongdong Zhang ◽  
Changjin Mo ◽  
Yifeng Gao ◽  
Hui Yuan ◽  
Fei Li ◽  
...  
2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Peng Qiao ◽  
Jin Di ◽  
Feng-jiang Qin

The torsional behaviors of composite box girders with corrugated steel webs are more obvious than traditional concrete girders due to the lower torsional rigidity. In this paper, the torsion and distortion of this kind of composite girder are studied. The formulas for warping normal stress and shear stress were put forward according to the second theory of Umanskii, considering the accordion effect of corrugated steel webs. Then, the influences of different dimensional parameters on the torsional and distortional stress are investigated. Results show that the effect of parameters on stress is different and implicit in composite box girders with corrugated steel webs. Under eccentric loads, the warping torsional and distortional stress in this kind of girder should not be neglected. Compared with girders under corresponding symmetric loads, the total warping stress may be as big as flexural normal stress, and the total shear stress usually reaches 30 to 50 percentage of flexural shear stress. So the warping stress and additional shear stress due to warping torsion and distortion are suggested to be calculated by the proposed equations in structural analysis, which are usually not taken into account in conventional concrete box girders.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 201-210
Author(s):  
Yoshikazu Tanaka ◽  
Satoru Odake ◽  
Jun Miyake ◽  
Hidemi Mutsuda ◽  
Atanas A. Popov ◽  
...  

Energy harvesting methods that use functional materials have attracted interest because they can take advantage of an abundant but underutilized energy source. Most vibration energy harvester designs operate most effectively around their resonant frequency. However, in practice, the frequency band for ambient vibrational energy is typically broad. The development of technologies for broadband energy harvesting is therefore desirable. The authors previously proposed an energy harvester, called a flexible piezoelectric device (FPED), that consists of a piezoelectric film (polyvinylidene difluoride) and a soft material, such as silicon rubber or polyethylene terephthalate. The authors also proposed a system based on FPEDs for broadband energy harvesting. The system consisted of cantilevered FPEDs, with each FPED connected via a spring. Simply supported FPEDs also have potential for broadband energy harvesting, and here, a theoretical evaluation method is proposed for such a system. Experiments are conducted to validate the derived model.


1999 ◽  
Vol 5 (1) ◽  
pp. 90-96 ◽  
Author(s):  
V.V. Pilipenko ◽  
◽  
N.I. Dovgot'ko ◽  
S.I. Dolgopolov ◽  
A.D. Nikolaev ◽  
...  

Author(s):  
Luís Fernando Marzola da Cunha ◽  
Matheus Lisboa Cardoch Valdes ◽  
Rhander Viana ◽  
Danilo dos Santos Oliveira ◽  
Luiz Eduardo Rodrigues Vieira

1992 ◽  
Vol 57 (1) ◽  
pp. 33-45
Author(s):  
Vladimír Jakuš

A new approach to theoretical evaluation of the Gibbs free energy of solvation was applied for estimation of retention data in high-performance liquid chromatography on reversed phases (RP-HPLC). Simple and improved models of stationary and mobile phases in RP-HPLC were employed. Statistically significant correlations between the calculated and experimental data were obtained for a heterogeneous series of twelve compounds.


Sign in / Sign up

Export Citation Format

Share Document