scholarly journals Effects of soil physical properties on soil loss due to manual yam harvesting under a sandy loam environment

2016 ◽  
Vol 4 (2) ◽  
pp. 121-125 ◽  
Author(s):  
Pius Olufemi Olusegun Dada ◽  
Olusegun Rasheed Adeyanju ◽  
Olayemi Johnson Adeosun ◽  
Johnson Kayode Adewumi
Soil Research ◽  
1992 ◽  
Vol 30 (5) ◽  
pp. 789 ◽  
Author(s):  
IJ Packer ◽  
GJ Hamilton ◽  
TB Koen

A long-term tillage trial was conducted (1981 to 1987) on loamy textured soils to quantify changes in runoff, soil loss and some soil physical properties due to conservation tillage practices. Two sites were established, one at Cowra on a sandy loam textured soil, and the other at Grenfell on a loamy textured soil. The tillage treatments imposed were direct drilling (DD), reduced tillage (RT) and traditional tillage (TT), with grazing at both sites, and a direct drilling ungrazed (NT) treatment at Cowra only. Runoff and soil loss were measured using a rainfall simulator, and sorptivity (S), saturated hydraulic conductivity (Ksat), bulk density to 40 mm (BD4) and 100 mm (BD10), organic carbon (OC) and water stable aggregates (WSA) were measured annually. Runoff decreased significantly in the minimum soil disturbance treatments (NT and DD) at Cowra. Runoff did not decrease in the stubble incorporation treatments despite a significant increase in OC and WSA. Decreases in runoff were due to the development and maintenance of porosity, particularly macropores. Changes in other soil physical properties were generally not significant owing to temporal variability. The regression relationship between OC and WSA, although significant, had little practical value because of high prediction error. Although improvements in soil physical properties were measured, a period of at least five years of cropping at both sites was required before they became significant and consistent.


2014 ◽  
Vol 38 (4) ◽  
pp. 1281-1292 ◽  
Author(s):  
Luis Alberto Lozano ◽  
Carlos Germán Soracco ◽  
Vicente S. Buda ◽  
Guillermo O. Sarli ◽  
Roberto Raúl Filgueira

The area under the no-tillage system (NT) has been increasing over the last few years. Some authors indicate that stabilization of soil physical properties is reached after some years under NT while other authors debate this. The objective of this study was to determine the effect of the last crop in the rotation sequence (1st year: maize, 2nd year: soybean, 3rd year: wheat/soybean) on soil pore configuration and hydraulic properties in two different soils (site 1: loam, site 2: sandy loam) from the Argentinean Pampas region under long-term NT treatments in order to determine if stabilization of soil physical properties is reached apart from a specific time in the crop sequence. In addition, we compared two procedures for evaluating water-conducting macroporosities, and evaluated the efficiency of the pedotransfer function ROSETTA in estimating the parameters of the van Genuchten-Mualem (VGM) model in these soils. Soil pore configuration and hydraulic properties were not stable and changed according to the crop sequence and the last crop grown in both sites. For both sites, saturated hydraulic conductivity, K0, water-conducting macroporosity, εma, and flow-weighted mean pore radius, R0ma, increased from the 1st to the 2nd year of the crop sequence, and this was attributed to the creation of water-conducting macropores by the maize roots. The VGM model adequately described the water retention curve (WRC) for these soils, but not the hydraulic conductivity (K) vs tension (h) curve. The ROSETTA function failed in the estimation of these parameters. In summary, mean values of K0 ranged from 0.74 to 3.88 cm h-1. In studies on NT effects on soil physical properties, the crop effect must be considered.


2021 ◽  
Author(s):  
Martin Zanutel ◽  
Sarah Garré ◽  
Charles Bielders

<p>In the context of global soil degradation, biochar is being promoted as a potential solution to improve soil quality, besides its carbon sequestration potential. Burying biochar in soils is known to effect soil physical quality in the short-term (<5 years), and the intensity of these effects depends on soil texture. However, the long-term effects of biochar remain largely unknown yet and are important to quantify given biochar’s persistency in soils. The objective of this study was therefore to assess the long-term effect of biochar on soil physical properties as a function of soil texture and biochar concentration.  For this purpose, soil physical properties (particle density, bulk density, porosity, water retention and hydraulic conductivity curves) were measured in the topsoil of three fields with former kiln sites containing charcoal more than 150 years old in Wallonia (southern Belgium).  The fields had a silt loam, loam and sandy loam texture.  Samples were collected along 3 transects in each field, from the center of the kiln sites outwards. </p><p>Particle density and bulk density slightly decreased as a function of charcoal content. Because particle density and bulk density were affected to a similar extent by charcoal content, total porosity was not affected by the presence of century-old charcoal. Regarding the soil water retention curve, charcoal affected mostly water content in the mesopore range. This effect was strongest for the sandy loam. On the other hand, the presence of century-old charcoal increased significantly the hydraulic conductivity at pF between 1.5 and 2 for the silt loam, while no effect of charcoal was observed for the loamy soil.  The study highlights a limited effect of century-old charcoal on the pore size distribution (at constant porosity) and on the resulting soil physical properties for the range of soils and charcoal concentrations investigated here.  Further research may be needed to confirm the observed trends over a wider range of soil types. </p>


2004 ◽  
Vol 84 (2) ◽  
pp. 211-218 ◽  
Author(s):  
M. R. Carter ◽  
J. B. Sanderson ◽  
J. A. MacLeod

Potato (Solanum tuberosum L.) rotations often require organic amendments to maintain or improve soil organic matter levels and soil physical properties. However, beneficial effects of compost can be modified by time of application and rotating tillage depth and intensity. This study was conducted to evaluate the effect of compost applied once at different phases in a 3-yr potato, barley (Hordeum vulgare L.), and red clover (Trifolium pretense L.) rotation on a range of soil physical properties and organic matter fractions for a Charlottetown fine sandy loam (Orthic Humo-Ferric Podzol) in Prince Edward Island. Soil samples (0–8 cm) were obtained during the second cycle of the rotation (after two compost applications) in the fifth year of the experiment. Soil properties were influenced by compost addition, time of compost addition, and crop phase. Compost-induced benefits in soil physical properties (bulk density, macro-porosity, oxygen diffusion rate, shear vane strength, water-filled pore space) were mainly expressed in the red clover phase of the rotation, where soil density was relatively high compared to the barley and potato phases, due to the absence of tillage. The soil physical parameters, however, were mainly within their established optimum ranges for this soil type. Soil water content at −0.033 MPa was increased by compost in the potato phase, compared to the control. Soil organic matter was influenced by both compost and crop C inputs. Compost increased soil particulate organic matter (POM) in the potato and barley phases. Due to differences in crop residue inputs, compost-related differences in organic matter were minimized in the red clover phase of the rotation. Compost addition increased potato tuber yield above the maximum yield obtained with nitrogen application. This “non-nitrogen” compost yield effect may be related to the slight, but significant, improvement in soil water-holding capacity. Overall , compost application in an intensive 3-yr potato rotation provided benefits for potato productivity and in both soil physical and biological properties. Key words: Soil organic carbon, particulate organic matter, soil physical properties, compost amendment, potato yield, eastern Canada


Soil Research ◽  
2017 ◽  
Vol 55 (4) ◽  
pp. 332 ◽  
Author(s):  
Johannes Lund Jensen ◽  
Per Schjønning ◽  
Bent T. Christensen ◽  
Lars Juhl Munkholm

Nutrient management affects not only crop productivity and environmental quality, but also soil physical properties related to soil tilth. Previous studies on soil physical properties have focussed on effects of fertiliser type, whereas the effect of fertiliser rate has been neglected. We examined the impact of no fertilisation (UNF) and different rates of mineral fertiliser (½NPK and 1NPK) and animal manure (1½AM) on an ensemble of soil physical characteristics, with the amount of fertiliser added at level 1 corresponding to the standard rate of plant nutrients for a given crop. Soil was from the Askov long-term field experiment, initiated in 1894 on a hard-setting sandy loam. We assessed clay dispersibility, wet-stability of aggregates, aggregate strength, bulk soil strength and soil pore characteristics. The soils receiving 1NPK and 1½AM had similar soil physical properties, the only differences being a wider range in the optimum water content for tillage and more plant-available water in the soil amended with 1½AM. Suboptimal fertiliser rates (UNF and ½NPK) increased clay dispersibility, soil cohesion and bulk density, and reduced aggregate stability. The physical properties of soils exposed to suboptimal fertilisation indicate that the level of soil organic matter, including active organic binding and bonding materials, has become critically low due to reduced inputs of crop residues. While long-term suboptimal fertilisation compromises soil physical properties, crop-yield-optimised rates of mineral fertilisers and animal manure appear to sustain several soil physical properties equally well.


Land Science ◽  
2020 ◽  
Vol 2 (1) ◽  
pp. p1
Author(s):  
Mohammed JIYA MAMMAN

The result of long time farming and poor soil management and conservation practices at Niger state college of Agriculture Mokwa Commercial farm which is the study area has led to serious soil degradation like nutrient depletion and soil erosion. There is the need for local content research and innovation to ameliorate the problem. This research work described the effect of organic manure and inorganic fertilizer (poultry manure, Cow dung and NPK fertilizer) on some soil physical properties i.e. the infiltration, porosity, bulk density and erodibility on a sandy loam soil of Mokwa North Central Nigeria. Four treatments of poultry, cow dung manure, NPK 15:15:15 fertilizer and non – application were applied in RCBD with 25t/ha of poultry manure and cow dung while NPK 15:15:15 was 150kg/ha and non- application as control replicated three times. Soil physical properties were measured and analyses were done to ascertain the soil aggregates. Ring infiltrometers were constructed and used to test the infiltration rate of the soil at each plot before soil treatments. Measurements were taken at time intervals for all the plots. The plots were then treated with manure and NPK and left for two weeks to decompose, after which infiltration measurements were taken again. Minitab 17 and Excel were used for the analysis. The cow Dung manure shows highest infiltration rate as compared to other treatments. The experiment shows that Cow Dung and poultry manure can be used to correct infiltration and soil physical anomalies especially when soil is compacted or clayey.


Sign in / Sign up

Export Citation Format

Share Document