Impact of carob extract on epidermal regeneration processes and cellular behavior in vitro

2017 ◽  
Vol 76 (6) ◽  
pp. AB403
2017 ◽  
Vol 137 (5) ◽  
pp. S158
Author(s):  
M.J. Flagler ◽  
M. Hare ◽  
J. Henry ◽  
R. Osborne

2020 ◽  
Author(s):  
V. Elagin ◽  
S. Rodimova ◽  
N. Minaev ◽  
A. Shpichka ◽  
M. Karabut ◽  
...  

2011 ◽  
Vol 24 (2) ◽  
pp. 75-80 ◽  
Author(s):  
C. Lequeux ◽  
A. Lhoste ◽  
M.R. Rovere ◽  
C. Montastier ◽  
O. Damour

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Tino Vollmer ◽  
Börje Ljungberg ◽  
Vera Jankowski ◽  
Joachim Jankowski ◽  
Griet Glorieux ◽  
...  

Abstract Identifying the key toxic players within an in-vivo toxic syndrome is crucial to develop targeted therapies. Here, we established a novel method that characterizes the effect of single substances by means of an ex-vivo incubation set-up. We found that primary human spermatozoa elicit a distinct motile response on a (uremic) toxic milieu. Specifically, this approach describes the influence of a bulk toxic environment (uremia) as well as single substances (uremic toxins) by real-time analyzing motile cellular behavior. We established the human spermatozoa-based toxicity testing (HSTT) for detecting single substance-induced toxicity to be used as a screening tool to identify in-vivo toxins. Further, we propose an application of the HSTT as a method of clinical use to evaluate toxin-removing interventions (hemodialysis).


2019 ◽  
Vol 11 (4) ◽  
pp. 045020 ◽  
Author(s):  
Bin Yao ◽  
Tian Hu ◽  
Xiaoliang Cui ◽  
Wei Song ◽  
Xiaobing Fu ◽  
...  
Keyword(s):  

2018 ◽  
Vol 115 (30) ◽  
pp. E7166-E7173 ◽  
Author(s):  
Thomas H. Mann ◽  
Lucy Shapiro

Spatial control of intracellular signaling relies on signaling proteins sensing their subcellular environment. In many cases, a large number of upstream signals are funneled to a master regulator of cellular behavior, but it remains unclear how individual proteins can rapidly integrate a complex array of signals within the appropriate spatial niche within the cell. As a model for how subcellular spatial information can control signaling activity, we have reconstituted the cell pole-specific control of the master regulator kinase/phosphatase CckA from the asymmetrically dividing bacterium Caulobacter crescentus. CckA is active as a kinase only when it accumulates within a microdomain at the new cell pole, where it colocalizes with the pseudokinase DivL. Both proteins contain multiple PAS domains, a multifunctional class of sensory domains present across the kingdoms of life. Here, we show that CckA uses its PAS domains to integrate information from DivL and its own oligomerization state to control the balance of its kinase and phosphatase activities. We reconstituted the DivL–CckA complex on liposomes in vitro and found that DivL directly controls the CckA kinase/phosphatase switch, and that stimulation of either CckA catalytic activity depends on the second of its two PAS domains. We further show that CckA oligomerizes through a multidomain interaction that is critical for stimulation of kinase activity by DivL, while DivL stimulation of CckA phosphatase activity is independent of CckA homooligomerization. Our results broadly demonstrate how signaling factors can leverage information from their subcellular niche to drive spatiotemporal control of cell signaling.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4591 ◽  
Author(s):  
Pablo Blázquez-Carmona ◽  
Manuel Sanchez-Raya ◽  
Juan Mora-Macías ◽  
Juan Antonio Gómez-Galán ◽  
Jaime Domínguez ◽  
...  

For the monitoring of bone regeneration processes, the instrumentation of the fixation is an increasingly common technique to indirectly measure the evolution of bone formation instead of ex vivo measurements or traditional in vivo techniques, such as X-ray or visual review. A versatile instrumented external fixator capable of adapting to multiple bone regeneration processes was designed, as well as a wireless acquisition system for the data collection. The design and implementation of the overall architecture of such a system is described in this work, including the hardware, firmware, and mechanical components. The measurements are conditioned and subsequently sent to a PC via wireless communication to be in vivo displayed and analyzed using a developed real-time monitoring application. Moreover, a model for the in vivo estimation of the bone callus stiffness from collected data was defined. This model was validated in vitro using elastic springs, reporting promising results with respect to previous equipment, with average errors and uncertainties below 6.7% and 14.04%. The devices were also validated in vivo performing a bone lengthening treatment on a sheep metatarsus. The resulting system allowed the in vivo mechanical characterization of the bone callus during experimentation, providing a low-cost, simple, and highly reliable solution.


Materials ◽  
2018 ◽  
Vol 11 (5) ◽  
pp. 752 ◽  
Author(s):  
Daniel Torres-Lagares ◽  
Lizett Castellanos-Cosano ◽  
Maria-Angeles Serrera-Figallo ◽  
Carmen López-Santos ◽  
Angel Barranco ◽  
...  

2007 ◽  
Vol 24 (5) ◽  
pp. 531-536 ◽  
Author(s):  
Frank Lüthen ◽  
Ulrike Bulnheim ◽  
Petra D. Müller ◽  
Joachim Rychly ◽  
Henrike Jesswein ◽  
...  

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12514
Author(s):  
Yuriy A. Karetin

A comprehensive statistical analysis using a wide range of linear and non-linear morphological parameters enabled identification of the main stages in the in vitro dynamics of cell behavior of immune cells of the marine invertebrate Asterias amurensis (Echinodermata, Asteroidea). Three stages may be distinguished in the cell behavior, which are characterized by the differences in complexity of the cell boundary microsculpture as well as by the size and asymmetry of the cell and convex hull of the cell. The first stage (5 min after placing cells onto a substrate) is characterized by more complex cell morphology and an increase in the process number and spreading area. The second stage (15 min) is characterized by simplification of cell morphology, retraction of some processes, and rounding of cells upon continued cell spreading. At the third stage (60 min), new large processes with rounded contours emerge due to partial retraction of the flattened cell surface. Each stage is characterized by statistically significant differences in several linear and nonlinear parameters of the external morphology for all cell types.


Sign in / Sign up

Export Citation Format

Share Document