The effect of scaffold architecture on cellular behavior in vitro

2020 ◽  
Author(s):  
V. Elagin ◽  
S. Rodimova ◽  
N. Minaev ◽  
A. Shpichka ◽  
M. Karabut ◽  
...  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Tino Vollmer ◽  
Börje Ljungberg ◽  
Vera Jankowski ◽  
Joachim Jankowski ◽  
Griet Glorieux ◽  
...  

Abstract Identifying the key toxic players within an in-vivo toxic syndrome is crucial to develop targeted therapies. Here, we established a novel method that characterizes the effect of single substances by means of an ex-vivo incubation set-up. We found that primary human spermatozoa elicit a distinct motile response on a (uremic) toxic milieu. Specifically, this approach describes the influence of a bulk toxic environment (uremia) as well as single substances (uremic toxins) by real-time analyzing motile cellular behavior. We established the human spermatozoa-based toxicity testing (HSTT) for detecting single substance-induced toxicity to be used as a screening tool to identify in-vivo toxins. Further, we propose an application of the HSTT as a method of clinical use to evaluate toxin-removing interventions (hemodialysis).


2019 ◽  
Vol 11 (4) ◽  
pp. 045020 ◽  
Author(s):  
Bin Yao ◽  
Tian Hu ◽  
Xiaoliang Cui ◽  
Wei Song ◽  
Xiaobing Fu ◽  
...  
Keyword(s):  

2018 ◽  
Vol 115 (30) ◽  
pp. E7166-E7173 ◽  
Author(s):  
Thomas H. Mann ◽  
Lucy Shapiro

Spatial control of intracellular signaling relies on signaling proteins sensing their subcellular environment. In many cases, a large number of upstream signals are funneled to a master regulator of cellular behavior, but it remains unclear how individual proteins can rapidly integrate a complex array of signals within the appropriate spatial niche within the cell. As a model for how subcellular spatial information can control signaling activity, we have reconstituted the cell pole-specific control of the master regulator kinase/phosphatase CckA from the asymmetrically dividing bacterium Caulobacter crescentus. CckA is active as a kinase only when it accumulates within a microdomain at the new cell pole, where it colocalizes with the pseudokinase DivL. Both proteins contain multiple PAS domains, a multifunctional class of sensory domains present across the kingdoms of life. Here, we show that CckA uses its PAS domains to integrate information from DivL and its own oligomerization state to control the balance of its kinase and phosphatase activities. We reconstituted the DivL–CckA complex on liposomes in vitro and found that DivL directly controls the CckA kinase/phosphatase switch, and that stimulation of either CckA catalytic activity depends on the second of its two PAS domains. We further show that CckA oligomerizes through a multidomain interaction that is critical for stimulation of kinase activity by DivL, while DivL stimulation of CckA phosphatase activity is independent of CckA homooligomerization. Our results broadly demonstrate how signaling factors can leverage information from their subcellular niche to drive spatiotemporal control of cell signaling.


2007 ◽  
Vol 24 (5) ◽  
pp. 531-536 ◽  
Author(s):  
Frank Lüthen ◽  
Ulrike Bulnheim ◽  
Petra D. Müller ◽  
Joachim Rychly ◽  
Henrike Jesswein ◽  
...  

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12514
Author(s):  
Yuriy A. Karetin

A comprehensive statistical analysis using a wide range of linear and non-linear morphological parameters enabled identification of the main stages in the in vitro dynamics of cell behavior of immune cells of the marine invertebrate Asterias amurensis (Echinodermata, Asteroidea). Three stages may be distinguished in the cell behavior, which are characterized by the differences in complexity of the cell boundary microsculpture as well as by the size and asymmetry of the cell and convex hull of the cell. The first stage (5 min after placing cells onto a substrate) is characterized by more complex cell morphology and an increase in the process number and spreading area. The second stage (15 min) is characterized by simplification of cell morphology, retraction of some processes, and rounding of cells upon continued cell spreading. At the third stage (60 min), new large processes with rounded contours emerge due to partial retraction of the flattened cell surface. Each stage is characterized by statistically significant differences in several linear and nonlinear parameters of the external morphology for all cell types.


2019 ◽  
Vol 116 (45) ◽  
pp. 22531-22539 ◽  
Author(s):  
Menahem Y. Rotenberg ◽  
Naomi Yamamoto ◽  
Erik N. Schaumann ◽  
Laura Matino ◽  
Francesca Santoro ◽  
...  

Traditional bioelectronics, primarily comprised of nonliving synthetic materials, lack cellular behaviors such as adaptability and motility. This shortcoming results in mechanically invasive devices and nonnatural signal transduction across cells and tissues. Moreover, resolving heterocellular electrical communication in vivo is extremely limited due to the invasiveness of traditional interconnected electrical probes. In this paper, we present a cell–silicon hybrid that integrates native cellular behavior (e.g., gap junction formation and biosignal processing) with nongenetically enabled photosensitivity. This hybrid configuration allows interconnect-free cellular modulation with subcellular spatial resolution for bioelectric studies. Specifically, we hybridize cardiac myofibroblasts with silicon nanowires and use these engineered hybrids to synchronize the electrical activity of cardiomyocytes, studying heterocellular bioelectric coupling in vitro. Thereafter, we inject the engineered myofibroblasts into heart tissues and show their ability to seamlessly integrate into contractile tissues in vivo. Finally, we apply local photostimulation with high cell specificity to tackle a long-standing debate regarding the existence of myofibroblast–cardiomyocyte electrical coupling in vivo.


2019 ◽  
Vol 6 (6) ◽  
pp. 1255-1265
Author(s):  
Lianyi Xu ◽  
Shuangshuang Chen ◽  
Xuemin Lu ◽  
Qinghua Lu

Abstract The 3D multicellular spheroids with intact cell–cell junctions have major roles in biological research by virtue of their unique advantage of mimicking the cellular physiological environments. In this work, a durable superamphiphobic silica aerogel surface (SSAS) has been fabricated for the upward culture of 3D multicellular spheroids. Poly(3,4-ethylenedioxythiophene) (PEDOT) was first electrodeposited on a conductive steel mesh as a first template for porous silica coating. Soot particles were then applied as a second template to construct a cauliflower-like silica aerogel nanostructure. After fluorination, a hierarchical structure with re-entrant curvature was finally fabricated as a durable superamphiphobic surface. This superamphiphobic surface also presented excellent antifouling towards biomacromolecules and cells, which has been demonstrated by the successful upward culture of cell spheroids. The upward culture makes the observation of cellular behavior in situ possible, holding great potential for 3D cellular evaluation in vitro.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 130
Author(s):  
Mercè Giner ◽  
Ernesto Chicardi ◽  
Alzenira de Fátima Costa ◽  
Laura Santana ◽  
María Ángeles Vázquez-Gámez ◽  
...  

In this work, the mechanical and bio-functional behavior of a TiNbTa alloy is evaluated as a potential prosthetic biomaterial used for cortical bone replacement. The results are compared with the reference Ti c.p. used as biomaterials for bone-replacement implants. The estimated mechanical behavior for TiNbTa foams was also compared with the experimental Ti c.p. foams fabricated by the authors in previous studies. A TiNbTa alloy with a 20–30% porosity could be a candidate for the replacement of cortical bone, while levels of 80% would allow the manufacture of implants for the replacement of trabecular bone tissue. Regarding biocompatibility, in vitro TiNbTa, cellular responses (osteoblast adhesion and proliferation) were compared with cell growth in Ti c.p. samples. Cell adhesion (presence of filopodia) and propagation were promoted. The TiNbTa samples had a bioactive response similar to that of Ti c.p. However, TiNbTa samples show a better balance of bio-functional behavior (promoting osseointegration) and biomechanical behavior (solving the stress-shielding phenomenon and guaranteeing mechanical resistance).


Sign in / Sign up

Export Citation Format

Share Document