scholarly journals Morphometry of cellular behavior of coelomocytes from starfish Asterias amurensis

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12514
Author(s):  
Yuriy A. Karetin

A comprehensive statistical analysis using a wide range of linear and non-linear morphological parameters enabled identification of the main stages in the in vitro dynamics of cell behavior of immune cells of the marine invertebrate Asterias amurensis (Echinodermata, Asteroidea). Three stages may be distinguished in the cell behavior, which are characterized by the differences in complexity of the cell boundary microsculpture as well as by the size and asymmetry of the cell and convex hull of the cell. The first stage (5 min after placing cells onto a substrate) is characterized by more complex cell morphology and an increase in the process number and spreading area. The second stage (15 min) is characterized by simplification of cell morphology, retraction of some processes, and rounding of cells upon continued cell spreading. At the third stage (60 min), new large processes with rounded contours emerge due to partial retraction of the flattened cell surface. Each stage is characterized by statistically significant differences in several linear and nonlinear parameters of the external morphology for all cell types.

2001 ◽  
Vol 114 (1) ◽  
pp. 37-47 ◽  
Author(s):  
G. Crevel ◽  
H. Huikeshoven ◽  
S. Cotterill

We originally isolated the Df31 protein from Drosophila embryo extracts as a factor which could decondense Xenopus sperm, by removing the sperm specific proteins and interacting with histones to facilitate their loading onto DNA. We now believe that this protein has a more general function in cellular DNA metabolism. The Df31 gene encodes a very hydrophilic protein with a predicted molecular mass of 18.5 kDa. Immunostaining showed that Df31 was present in a wide range of cell types throughout differentiation and in both dividing and non-dividing cells. In all cases the protein is present in large amounts, comparable with the level of nucleosomes. Injection of antisense oligonucleotides to lower the level of Df31 in embryos caused severe disruption of the nuclear structure. Large irregular clumps of DNA were formed, and in most cases the amount of DNA associated with each clump was more than that found in a normal nucleus. Immunofluorescence, cell fractionation, and formaldehyde cross-linking show that Df31 is associated with chromatin and that a significant fraction of it binds very tightly. It also shows the same binding characteristics when loaded onto chromatin in vitro. Chromatin fractionation shows that Df31 is tightly associated with nucleosomes, preferentially with oligonucleosomes. Despite this no differences were observed in the properties of nucleosomes loaded in the in vitro system in the presence and absence of Df31. These results suggest that Df31 has a role in chromosomal structure, most likely acting as a structural protein at levels of folding higher than that of nucleosomes.


Blood ◽  
1998 ◽  
Vol 92 (9) ◽  
pp. 3226-3239 ◽  
Author(s):  
Ping Zhou ◽  
Liping Qian ◽  
Christine K. Bieszczad ◽  
Randolph Noelle ◽  
Michael Binder ◽  
...  

Abstract Mcl-1 is a member of the Bcl-2 family that is expressed in early monocyte differentiation and that can promote viability on transfection into immature myeloid cells. However, the effects of Mcl-1 are generally short lived compared with those of Bcl-2 and are not obvious in some transfectants. To further explore the effects of this gene, mice were produced that expressed Mcl-1 as a transgene in hematolymphoid tissues. The Mcl-1 transgene was found to cause moderate viability enhancement in a wide range of hematopoietic cell types, including lymphoid (B and T) as well as myeloid cells at both immature and mature stages of differentiation. However, enhanced hematopoietic capacity in transgenic bone marrow and spleen was not reflected in any change in pool sizes in the peripheral blood. In addition, among transgenic cells, mature T cells remained long lived compared with B cells and macrophages could live longer than either of these. Interestingly, when hematopoietic cells were maintained in tissue culture in the presence of interleukin-3, Mcl-1 enhanced the probability of outgrowth of continuously proliferating myeloid cell lines. Thus, Mcl-1 transgenic cells remained subject to normal in vivo homeostatic mechanisms controlling viable cell number, but these constraints could be overridden under specific conditions in vitro. Within the organism, Bcl-2 family members may act at “viability gates” along the differentiation continuum, functioning as part of a system for controlled hematopoietic cell amplification. Enforced expression of even a moderate viability-promoting member of this family such as Mcl-1, within a conducive intra- and extracellular environment in isolation from normal homeostatic constraints, can substantially increase the probability of cell immortalization. © 1998 by The American Society of Hematology.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 436 ◽  
Author(s):  
David Valentín ◽  
Charline Roehr ◽  
Alexandre Presas ◽  
Christian Heiss ◽  
Eduard Egusquiza ◽  
...  

In this present study, we propose a method for exposing biological cells to mechanical vibration. The motive for our research was to design a bioreactor prototype in which in-depth in vitro studies about the influence of vibration on cells and their metabolism can be performed. The therapy of cancer or antibacterial measures are applications of interest. In addition, questions about the reaction of neurons to vibration are still largely unanswered. In our methodology, we used a piezoelectric patch (PZTp) for inducing mechanical vibration to the structure. To control the vibration amplitude, the structure could be excited at different frequency ranges, including resonance and non-resonance conditions. Experimental results show the vibration amplitudes expected for every frequency range tested, as well as the vibration pattern of those excitations. These are essential parameters to quantify the effect of vibration on cell behavior. Furthermore, a numerical model was validated with the experimental results presenting accurate results for the prediction of those parameters. With the calibrated numerical model, we will study in greater depth the effects of different vibration patterns for the abovementioned cell types.


2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Soukaina Bahsoun ◽  
Karen Coopman ◽  
Elizabeth C. Akam

AbstractMesenchymal stem cells (MSCs) represent an invaluable asset for the field of cell therapy. Human Bone marrow-derived MSCs (hBM-MSCs) are one of the most commonly used cell types in clinical trials. They are currently being studied and tested for the treatment of a wide range of diseases and conditions. The future availability of MSCs therapies to the public will require a robust and reliable delivery process. Cryopreservation represents the gold standard in cell storage and transportation, but its effect on BM-MSCs is still not well established. A systematic review was conducted to evaluate the impact of cryopreservation on BM-MSCs and to attempt to uncover the reasons behind some of the controversial results reported in the literature. Forty-one in vitro studies were analysed, and their results organised according to the cell attributes they assess. It was concluded that cryopreservation does not affect BM-MSCs morphology, surface marker expression, differentiation or proliferation potential. However, mixed results exist regarding the effect on colony forming ability and the effects on viability, attachment and migration, genomic stability and paracrine function are undefined mainly due to the huge variabilities governing the cryopreservation process as a whole and to the lack of standardised assays.


Blood ◽  
1998 ◽  
Vol 92 (9) ◽  
pp. 3226-3239 ◽  
Author(s):  
Ping Zhou ◽  
Liping Qian ◽  
Christine K. Bieszczad ◽  
Randolph Noelle ◽  
Michael Binder ◽  
...  

Mcl-1 is a member of the Bcl-2 family that is expressed in early monocyte differentiation and that can promote viability on transfection into immature myeloid cells. However, the effects of Mcl-1 are generally short lived compared with those of Bcl-2 and are not obvious in some transfectants. To further explore the effects of this gene, mice were produced that expressed Mcl-1 as a transgene in hematolymphoid tissues. The Mcl-1 transgene was found to cause moderate viability enhancement in a wide range of hematopoietic cell types, including lymphoid (B and T) as well as myeloid cells at both immature and mature stages of differentiation. However, enhanced hematopoietic capacity in transgenic bone marrow and spleen was not reflected in any change in pool sizes in the peripheral blood. In addition, among transgenic cells, mature T cells remained long lived compared with B cells and macrophages could live longer than either of these. Interestingly, when hematopoietic cells were maintained in tissue culture in the presence of interleukin-3, Mcl-1 enhanced the probability of outgrowth of continuously proliferating myeloid cell lines. Thus, Mcl-1 transgenic cells remained subject to normal in vivo homeostatic mechanisms controlling viable cell number, but these constraints could be overridden under specific conditions in vitro. Within the organism, Bcl-2 family members may act at “viability gates” along the differentiation continuum, functioning as part of a system for controlled hematopoietic cell amplification. Enforced expression of even a moderate viability-promoting member of this family such as Mcl-1, within a conducive intra- and extracellular environment in isolation from normal homeostatic constraints, can substantially increase the probability of cell immortalization. © 1998 by The American Society of Hematology.


2016 ◽  
Vol 113 (12) ◽  
pp. 3185-3190 ◽  
Author(s):  
Zhen-Ning Zhang ◽  
Beatriz C. Freitas ◽  
Hao Qian ◽  
Jacques Lux ◽  
Allan Acab ◽  
...  

Probing a wide range of cellular phenotypes in neurodevelopmental disorders using patient-derived neural progenitor cells (NPCs) can be facilitated by 3D assays, as 2D systems cannot entirely recapitulate the arrangement of cells in the brain. Here, we developed a previously unidentified 3D migration and differentiation assay in layered hydrogels to examine how these processes are affected in neurodevelopmental disorders, such as Rett syndrome. Our soft 3D system mimics the brain environment and accelerates maturation of neurons from human induced pluripotent stem cell (iPSC)-derived NPCs, yielding electrophysiologically active neurons within just 3 wk. Using this platform, we revealed a genotype-specific effect of methyl-CpG-binding protein-2 (MeCP2) dysfunction on iPSC-derived neuronal migration and maturation (reduced neurite outgrowth and fewer synapses) in 3D layered hydrogels. Thus, this 3D system expands the range of neural phenotypes that can be studied in vitro to include those influenced by physical and mechanical stimuli or requiring specific arrangements of multiple cell types.


2018 ◽  
Vol 20 (2) ◽  
pp. 259-264
Author(s):  
A V Kosulin ◽  
L N Beldiman ◽  
S V Kromsky ◽  
A A Kokorina ◽  
E V Mikhailova ◽  
...  

Short bowel syndrome is an important clinical problem characterized by a high incidence of serious complications, deaths and socioeconomic consequences. Parenteral nutrition provides only a temporary solution without reducing the risk of complications. This applies equally to surgical treatment, in particular to small intestine transplantation and related concomitant interventions, which only facilitate the adaptation of the intestine to new conditions. Potential approaches have been analyzed in the treatment of the syndrome of the small intestine, which can be offered by dynamically developing tissue engineering. Various types of carriers and cell types that are used in experiments for obtaining tissue engineering designs of the intestine are discussed. A wide range of variants of such constructions is analyzed that can lead to obtaining an organ prosthesis with a cellular organization and mechanical stability similar to those of the native small intestine, which will ensure the necessary biocompatibility. It is established that one of the optimal carriers for today are extracellular matrices obtained by decellularization of the native small intestine. This process allows to preserve the microarchitecture of the small intestine, which greatly facilitates the process of filling the matrix with cells both in vitro and in vivo. It has also been established that mesenchymal stromal multipotent cells and organoid units obtained from the tissue of the native small intestine are particularly prominent among the most promising participants in the cellular ensemble.


2012 ◽  
Vol 34 (3) ◽  
pp. 4-11 ◽  
Author(s):  
Marta Fiorotto

The skeletal musculature is usually thought of as the primary organ of locomotion, and, like the tyres of a high-performance racing car, their composition, design, preparation and plasticity can make the difference between winner and ‘wannabe’. The similarities do not end there, however. Their primary components (cells of the mesodermal layer in the embryo and latex from the rubber tree) begin their existence in locations that can be quite distant from their final point of use and in forms that bear no resemblance to the final product. Their differentiation from primary material to final product entails extensive processing, and the integration of other materials and structures are essential to ensure their function. A fundamental difference, however, is that, in the case of muscle, once the embryo is formed, the progression from relatively undifferentiated mesodermal cells to the final structures is on autopilot, provided there are no contextual aberrations either from genetic or environmental causes. Our current understanding of how muscles develop is a synthesis of observations made on a wide array of organisms, including nematode worms, fruitflies, fish, frogs, birds and various mammals, as well as from the in vitro study of cells isolated from these species. The study of myogenesis in mammals, although less amenable to experimental manipulation, has been facilitated by the recent advances in mouse genetic engineering which has enabled the function of individual genes and cell types to be investigated, as well as the lineage of cells to be traced back to their origin. In this rapid trek through the life of a muscle, how the production of a mature functional muscle from its early inception is orchestrated will be outlined in exceedingly broad strokes so as to convey the wide range of processes that must be engaged in order to generate a functional muscle. Hopefully, enough information will be provided to encourage those interested to explore further.


2021 ◽  
Author(s):  
Ben Gross ◽  
Elijah Shelton ◽  
Carlos Gomez ◽  
Otger Campàs

From cellular mechanotransduction to the formation of embryonic tissues and organs, mechanics has been shown to play an important role in the control of cell behavior and embryonic development. Most of our existing knowledge of how mechanics affects cell behavior comes from in vitro studies, mainly because measuring cell and tissue mechanics in 3D multicellular systems, and especially in vivo, remains challenging. Oil microdroplet sensors, and more recently gel microbeads, use surface deformations to directly quantify mechanical stresses within developing tissues, in vivo and in situ, as well as in 3D in vitro systems like organoids or multicellular spheroids. However, an automated analysis software able to quantify the spatiotemporal evolution of stresses and their characteristics from particle deformations is lacking. Here we develop STRESS (Surface Topography Reconstruction for Evaluation of Spatiotemporal Stresses), an analysis software to quantify the geometry of deformable particles of spherical topology, such as microdroplets or gel microbeads, that enables the automatic quantification of the temporal evolution of stresses in the system and the spatiotemporal features of stress inhomogeneities in the tissue. As a test case, we apply this new code to measure the temporal evolution of mechanical stresses using oil microdroplets in developing zebrafish tissues. Starting from a 3D timelapse of a droplet, the software automatically calculates the statistics of local anisotropic stresses, decouples the deformation modes associated with tissue- and cell-scale stresses, obtains their spatial features on the droplet surface and analyzes their spatiotemporal variations using spatial and temporal stress autocorrelations. The automated nature of the analysis will help users obtain quantitative information about mechanical stresses in a wide range of 3D multicellular systems, from developing embryos or tissue explants to organoids.


Sign in / Sign up

Export Citation Format

Share Document