Impact of surfactant-phase chemistry on skin mildness: Lamellar surfactants provide significant mildness benefits compared with conventional micellar surfactants

2018 ◽  
Vol 79 (3) ◽  
pp. AB161
2006 ◽  
Vol 71 (1) ◽  
pp. 129-137 ◽  
Author(s):  
Yuanhua Sun ◽  
Tonglai Zhang ◽  
Jianguo Zhang ◽  
Xiaojing Qiao ◽  
Li Yang ◽  
...  

A "snapshot" simulation of the surface reaction zone is captured by a thin film of material heated rapidly to temperatures characteristic of the burning surface by using the T-jump/FTIR spectroscopy. The time-to-exotherm (tx) kinetics method derived from the control voltage trace of the Pt filament can be introduced to resolve the kinetics of an energetic material owing to its high sensitivity to the thermochemical reactions. The kinetic parameters of the two title compounds are determined under different pressures. The results show that Li(NTO)·2H2O and Na(NTO)·H2O (NTO = anion of 3-nitro-1,2,4-triazol-5-one) exhibit weak pressure dependence, their decomposition is dominated by the condensed phase chemistry irrespective of the pressure in the 0.1-1.1 MPa range. The values of Ea determined here are smaller than those given by a traditional non-isothermal differential scanning colorimetry (DSC) method, which might be resembled as the surface of explosion more closely and enabled the pyrolysis surface to be incorporated into models of steady and possibly unsteady combustion. The kinetics can also be successfully used to understand the behavior of the energetic material in practical combustion problems.


2020 ◽  
Vol 234 (7-9) ◽  
pp. 1395-1426 ◽  
Author(s):  
Paul Sela ◽  
Sebastian Peukert ◽  
Jürgen Herzler ◽  
Christof Schulz ◽  
Mustapha Fikri

AbstractShock-tube experiments have been performed to investigate the thermal decomposition of octamethylcyclotetrasiloxane (D4, Si4O4C8H24) and hexamethylcyclotrisiloxane (D3, Si3O3C6H18) behind reflected shock waves by gas chromatography/mass spectrometry (GC/MS) and high-repetition-rate time-of-flight mass spectrometry (HRR-TOF-MS) in a temperature range of 1160–1600 K and a pressure range of 1.3–2.6 bar. The main observed stable products were methane (CH4), ethylene (C2H4), ethane (C2H6), acetylene (C2H2) and in the case of D4 pyrolysis, also D3 was measured as a product in high concentration. A kinetics sub-mechanism accounting for the D4 and D3 gas-phase chemistry was devised, which consists of 19 reactions and 15 Si-containing species. The D4/D3 submechanism was combined with the AramcoMech 2.0 (Li et al., Proc. Combust. Inst. 2017, 36, 403–411) to describe hydrocarbon chemistry. The unimolecular rate coefficients for D4 and D3 decomposition are represented by the Arrhenius expressions ktotal/D4(T) = 2.87 × 1013 exp(−273.2 kJ mol−1/RT) s−1 and ktotal/D3(T) = 9.19 × 1014 exp(−332.0 kJ mol−1/RT) s−1, respectively.


2001 ◽  
Vol 32 ◽  
pp. 269-270
Author(s):  
J.E. WILLIAMS ◽  
F.J. DENTENER ◽  
A.R. van den BERG

2019 ◽  
Vol 12 (3) ◽  
pp. 1209-1225 ◽  
Author(s):  
Christoph A. Keller ◽  
Mat J. Evans

Abstract. Atmospheric chemistry models are a central tool to study the impact of chemical constituents on the environment, vegetation and human health. These models are numerically intense, and previous attempts to reduce the numerical cost of chemistry solvers have not delivered transformative change. We show here the potential of a machine learning (in this case random forest regression) replacement for the gas-phase chemistry in atmospheric chemistry transport models. Our training data consist of 1 month (July 2013) of output of chemical conditions together with the model physical state, produced from the GEOS-Chem chemistry model v10. From this data set we train random forest regression models to predict the concentration of each transported species after the integrator, based on the physical and chemical conditions before the integrator. The choice of prediction type has a strong impact on the skill of the regression model. We find best results from predicting the change in concentration for long-lived species and the absolute concentration for short-lived species. We also find improvements from a simple implementation of chemical families (NOx = NO + NO2). We then implement the trained random forest predictors back into GEOS-Chem to replace the numerical integrator. The machine-learning-driven GEOS-Chem model compares well to the standard simulation. For ozone (O3), errors from using the random forests (compared to the reference simulation) grow slowly and after 5 days the normalized mean bias (NMB), root mean square error (RMSE) and R2 are 4.2 %, 35 % and 0.9, respectively; after 30 days the errors increase to 13 %, 67 % and 0.75, respectively. The biases become largest in remote areas such as the tropical Pacific where errors in the chemistry can accumulate with little balancing influence from emissions or deposition. Over polluted regions the model error is less than 10 % and has significant fidelity in following the time series of the full model. Modelled NOx shows similar features, with the most significant errors occurring in remote locations far from recent emissions. For other species such as inorganic bromine species and short-lived nitrogen species, errors become large, with NMB, RMSE and R2 reaching >2100 % >400 % and <0.1, respectively. This proof-of-concept implementation takes 1.8 times more time than the direct integration of the differential equations, but optimization and software engineering should allow substantial increases in speed. We discuss potential improvements in the implementation, some of its advantages from both a software and hardware perspective, its limitations, and its applicability to operational air quality activities.


2002 ◽  
Vol 12 (4) ◽  
pp. 487-494 ◽  
Author(s):  
Barbora Piknova ◽  
Vincent Schram ◽  
StephenB Hall

2009 ◽  
Vol 48 (3) ◽  
pp. 1391-1399 ◽  
Author(s):  
R. Lanza ◽  
D. Dalle Nogare ◽  
P. Canu

ChemInform ◽  
2007 ◽  
Vol 38 (30) ◽  
Author(s):  
Marcos N. Eberlin ◽  
Daniella Vasconcellos Augusti ◽  
Rodinei Augusti

Sign in / Sign up

Export Citation Format

Share Document