scholarly journals GW27-e0156 QSKL inhibits oxygen-glucose deprivation/recovery of oxygen glucose-induced H9C2 cells apoptosis through modulating p-Akt-p53/Mdm2 signaling pathway

2016 ◽  
Vol 68 (16) ◽  
pp. C5
Author(s):  
Hong Chang ◽  
Yong Wang ◽  
Chun Li ◽  
Wei Wang
2021 ◽  
Author(s):  
Yulin Wang ◽  
Ying Jian ◽  
Xiaofu Zhang ◽  
Bin Ni ◽  
Mingwei Wang ◽  
...  

Abstract Melatonin has been shown to exert protective effect during myocardial ischemia/reperfusion (I/R). However, the underlying mechanism is not completely understood. Using the oxygen-glucose deprivation and reperfusion (OGD/R) model of H9c2 cells in vitro, we found that melatonin alleviated OGD/R-induced H9c2 cell injury via inhibiting Foxo3a/Bim signaling pathway. Inhibition of Rac1 activation contributed to the protective effect of melatonin against OGD/R injury in H9c2 cells. Additionally, melatonin inhibited OGD/R-activated Foxo3a/Bim signaling pathway through inactivation of Rac1. Furthermore, JNK inactivation was responsible for Rac1 inhibition-mediated inactivation of Foxo3a/Bim signaling pathway and decreased cell injury in melatonin-treated H9c2 cells. Taken together, these findings identified a Rac1/JNK/Foxo3a/Bim signaling pathway in melatonin-induced protective effect against OGD/R injury in H9c2 cells. This study provided a novel insight into the protective mechanism of melatonin against myocardial I/R injury.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Dan Lu ◽  
Lingling Shen ◽  
Hongcheng Mai ◽  
Jiankun Zang ◽  
Yanfang Liu ◽  
...  

Ischemic stroke is usually followed by inflammatory responses mediated by microglia. However, the effect of statins on directly preventing posthypoxia microglia inflammatory factors to prevent injury to surrounding healthy neurons is unclear. Atorvastatin and rosuvastatin, which have different physical properties regarding their lipid and water solubility, are the most common HMG-CoA reductase inhibitors (statins) and might directly block posthypoxia microglia inflammatory factors to prevent injury to surrounding neurons. Neuronal damage and microglial activation of the peri-infarct areas were investigated by Western blotting and immunofluorescence after 24 hours in a middle cerebral artery occlusion (MCAO) rat model. The decrease in neurons was in accordance with the increase in microglia, which could be reversed by both atorvastatin and rosuvastatin. The effects of statins on blocking secretions from posthypoxia microglia and reducing the secondary damage to surrounding normal neurons were studied in a coculture system in vitro. BV2 microglia were cultured under oxygen glucose deprivation (OGD) for 3 hours and then cocultured following reperfusion for 24 hours in the upper wells of transwell plates with primary neurons being cultured in the bottom wells. Inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and cyclooxygenase-2 (COX2), which are activated by the nuclear factor-kappa B (NF-κB) signaling pathway in OGD-induced BV2 microglia, promoted decreased release of the anti-inflammatory cytokine IL-10 and apoptosis of neurons in the coculture systems according to ELISA and Western blotting. However, pretreatment with atorvastatin or rosuvastatin significantly reduced neuronal death, synaptic injury, and amyloid-beta (Aβ) accumulation, which might lead to increased low-density lipoprotein receptors (LDLRs) in BV2 microglia. We concluded that the proinflammatory mediators released from postischemia damage could cause damage to surrounding normal neurons, while HMG-CoA reductase inhibitors prevented neuronal apoptosis and synaptic injury by inactivating microglia through blocking the NF-κB signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document