Functional connectivity between right-lateralized ventrolateral prefrontal cortex and insula mediates reappraisal's link to memory control

Author(s):  
Wenjing Yang ◽  
Hui Jia ◽  
Qiuyang Feng ◽  
Dongtao Wei ◽  
Jiang Qiu ◽  
...  
2016 ◽  
Vol 116 (3) ◽  
pp. 920-937 ◽  
Author(s):  
Jennifer Barredo ◽  
Timothy D. Verstynen ◽  
David Badre

Functional magnetic resonance imaging (fMRI) evidence indicates that different subregions of ventrolateral prefrontal cortex (VLPFC) participate in distinct cortical networks. These networks have been shown to support separable cognitive functions: anterior VLPFC [inferior frontal gyrus (IFG) pars orbitalis] functionally correlates with a ventral fronto-temporal network associated with top-down influences on memory retrieval, while mid-VLPFC (IFG pars triangularis) functionally correlates with a dorsal fronto-parietal network associated with postretrieval control processes. However, it is not known to what extent subregional differences in network affiliation and function are driven by differences in the organization of underlying white matter pathways. We used high-angular-resolution diffusion spectrum imaging and functional connectivity analysis in unanesthetized humans to address whether the organization of white matter connectivity differs between subregions of VLPFC. Our results demonstrate a ventral-dorsal division within IFG. Ventral IFG as a whole connects broadly to lateral temporal cortex. Although several different individual white matter tracts form connections between ventral IFG and lateral temporal cortex, functional connectivity analysis of fMRI data indicates that these are part of the same ventral functional network. By contrast, across subdivisions, dorsal IFG was connected with the midfrontal gyrus and correlated as a separate dorsal functional network. These qualitative differences in white matter organization within larger macroanatomical subregions of VLPFC support prior functional distinctions among these regions observed in task-based and functional connectivity fMRI studies. These results are consistent with the proposal that anatomical connectivity is a crucial determinant of systems-level functional organization of frontal cortex and the brain in general.


2021 ◽  
Author(s):  
Lucas R. Trambaiolli ◽  
Xiaolong Peng ◽  
Julia F. Lehman ◽  
Hesheng Liu ◽  
Suzanne N. Haber

AbstractThree large-scale brain networks are considered essential to cognitive flexibility: the ventral and dorsal attention (VAN and DAN) and salience (SN) networks. The ventrolateral prefrontal cortex (vlPFC) is a known component of the VAN and DAN, but its role in the SN is controversial. In this study, we used a translational and multimodal approach to demonstrate the existence of a SN node within the vlPFC. First, we used tract-tracing methods in non-human primates (NHP) to quantify the anatomic connectivity strength between the different vlPFC areas and the frontal and insular cortices. The strongest connections with the dorsal anterior cingulate cortex (dACC) and anterior insula (AI) locations comprising the two main cortical SN nodes were derived from the caudal area 47/12. This location also has strong axonal projections to subcortical structures of the salience network, including the dorsomedial thalamus, hypothalamus, sublenticular extended amygdala, and periaqueductal gray. Second, we used a seed-based functional connectivity analysis in NHP resting-state functional MRI (rsfMRI) data to validate the caudal area 47/12 as an SN node. Third, we used the same approach in human rsfMRI data to identify a homologous structure in caudal area 47/12, also showing strong connections with the SN cortical nodes, thus confirming the caudal area 47/12 as the SN node in the vlPFC. Taken together, the vlPFC contains nodes for all three cognitive networks, the VAN, DAN, and SN. Thus, the vlPFC is in a position to switch between these three cognitive networks, suggesting a key role as an attentional hub. Its tight additional connections to the orbitofrontal, dorsolateral, and ventral premotor cortices, places the vlPFC at the center for switching behaviors based on environmental stimuli, computing value and cognitive control.


2020 ◽  
Vol 48 (7) ◽  
pp. 1-19
Author(s):  
Ryan T. Daley ◽  
Holly J. Bowen ◽  
Eric C. Fields ◽  
Angela Gutchess ◽  
Elizabeth A. Kensinger

Self-relevance effects are often confounded by the presence of emotional content, rendering it difficult to determine how brain networks functionally connected to the ventromedial prefrontal cortex (vmPFC) are affected by the independent contributions of self-relevance and emotion. This difficulty is complicated by age-related changes in functional connectivity between the vmPFC and other default mode network regions, and regions typically associated with externally oriented networks. We asked groups of younger and older adults to imagine placing emotional and neutral objects in their home or a stranger's home. An age-invariant vmPFC cluster showed increased activation for self-relevant and emotional content processing. Functional connectivity analyses revealed age × self-relevance interactions in vmPFC connectivity with the anterior cingulate cortex. There were also age × emotion interactions in vmPFC functional connectivity with the anterior insula, orbitofrontal gyrus, inferior frontal gyrus, and supramarginal gyrus. Interactions occurred in regions with the greatest differences between the age groups, as revealed by conjunction analyses. Implications of the findings are discussed.


2021 ◽  
pp. 216770262110164
Author(s):  
Pan Liu ◽  
Matthew R. J. Vandermeer ◽  
Ola Mohamed Ali ◽  
Andrew R. Daoust ◽  
Marc F. Joanisse ◽  
...  

Understanding the development of depression can inform etiology and prevention/intervention. Maternal depression and maladaptive patterns of temperament (e.g., low positive emotionality [PE] or high negative emotionality, especially sadness) are known to predict depression. Although it is unclear how these risks cause depression, altered functional connectivity (FC) during negative-emotion processing may play an important role. We investigated whether maternal depression and age-3 emotionality predicted FC during negative mood reactivity in never-depressed preadolescents and whether these relationships were augmented by early-life stress. Maternal depression predicted decreased medial prefrontal cortex (mPFC)–amygdala and mPFC–insula FC but increased mPFC–posterior cingulate cortex (PCC) FC. PE predicted increased dorsolateral prefrontal cortex–amygdala FC, whereas sadness predicted increased PCC-based FC in insula, orbitofrontal cortex, and anterior cingulate cortex (ACC). Sadness was more strongly associated with PCC–insula and PCC–ACC FC as early stress increased. Findings indicate that early depression risks may be mediated by FC underlying negative-emotion processing.


2014 ◽  
Vol 111 (4) ◽  
pp. 787-803 ◽  
Author(s):  
Michael J. Koval ◽  
R. Matthew Hutchison ◽  
Stephen G. Lomber ◽  
Stefan Everling

The dorsolateral prefrontal cortex (dlPFC) and anterior cingulate cortex (ACC) have both been implicated in the cognitive control of saccadic eye movements by single neuron recording studies in nonhuman primates and functional imaging studies in humans, but their relative roles remain unclear. Here, we reversibly deactivated either dlPFC or ACC subregions in macaque monkeys while the animals performed randomly interleaved pro- and antisaccades. In addition, we explored the whole-brain functional connectivity of these two regions by applying a seed-based resting-state functional MRI analysis in a separate cohort of monkeys. We found that unilateral dlPFC deactivation had stronger behavioral effects on saccades than unilateral ACC deactivation, and that the dlPFC displayed stronger functional connectivity with frontoparietal areas than the ACC. We suggest that the dlPFC plays a more prominent role in the preparation of pro- and antisaccades than the ACC.


Sign in / Sign up

Export Citation Format

Share Document