Sedimentary cover in the South Western Desert of Egypt as deduced from Bouguer gravity and drill-hole data

2013 ◽  
Vol 82 ◽  
pp. 1-14 ◽  
Author(s):  
M.M. Senosy ◽  
M.M. Youssef ◽  
M. Abdel Zaher
2020 ◽  
pp. 4-15
Author(s):  
M.F. Tagiyev ◽  
◽  
I.N. Askerov ◽  
◽  
◽  
...  

Based on pyrolysis data an overview is given on the generative potential and maturity of individual stratigraphic units in the South Caspian sedimentary cover. Furthermore, the pyrolysis analyses indicate that the Lower Pliocene Productive Series being immature itself is likely to have received hydrocarbon charge from the underlying older strata. The present state of the art in studying hydrocarbon migration and the "source-accumulation" type relationship between source sediments and reservoired oils in the South Caspian basin are touched upon. The views of and geochemical arguments by different authors for charging the Lower Pliocene Productive Series reservoirs with hydrocarbons from the underlying Oligocene-Miocene source layers are presented. Quantitative aspects of hydrocarbon generation, fluid dynamics, and formation of anomalous temperature & pressure fields based on the results of basin modelling in Azerbaijan are considered. Based on geochemical data analysis and modelling studies, as well as honouring reports by other workers the importance and necessity of upward migration for hydrocarbon transfer from deep generation centers to reservoirs of the Productive Series are shown.


2010 ◽  
Vol 181 (6) ◽  
pp. 477-501 ◽  
Author(s):  
Xavier Le Pichon ◽  
Claude Rangin ◽  
Youri Hamon ◽  
Nicolas Loget ◽  
Jin Ying Lin ◽  
...  

AbstractWe investigate the geodynamics of the Southeast Basin with the help of maps of the basement and of major sedimentary horizons based on available seismic reflection profiles and drill holes. We also present a study of the seismicity along the Middle Durance fault. The present seismic activity of the SE Basin cannot be attributed to the Africa/Eurasia shortening since spatial geodesy demonstrates that there is no significant motion of Corsica-Sardinia with respect to Eurasia and since gravitational collapse of the Alps has characterized the last few millions years. Our study demonstrates that the basement of this 140 by 200 km Triassic basin has been essentially undeformed since its formation, most probably because of the hardening of the cooling lithosphere after its 50% thinning during the Triassic distension. The regional geodynamics are thus dominated by the interaction of this rigid unit with the surrounding zones of active deformation. The 12 km thick Mesozoic sediment cover includes at its base an up to 4 km thick mostly evaporitic Triassic layer that is hot and consequently highly fluid. The sedimentary cover is thus decoupled from the basement. As a result, the sedimentary cover does not have enough strength to produce reliefs exceeding about 500 to 750 m. That the deformation and seismicity affecting the basin are the results of cover tectonics is confirmed by the fact that seismic activity in the basin only affects the sedimentary cover. Based on our mapping of the structure of the basin, we propose a simple mechanism accounting for the Neogene deformation of the sedimentary cover. The formation of the higher Alps has first resulted to the north in the shortening of the Diois-Baronnies sedimentary cover that elevated the top of Jurassic horizons by about 4 km with respect to surrounding areas to the south and west. There was thus passage from a brittle-ductile basement decollement within the higher Alps to an evaporitic decollement within the Diois-Baronnies. This shortening and consequent elevation finally induced the southward motion of the basin cover south of the Lure mountain during and after the Middle Miocene. This southward motion was absorbed by the formation of the Luberon and Trévaresse mountains to the south. To the east of the Durance fault, there is no large sediment cover. The seismicity there, is related to the absorption of the Alps collapse within the basement itself. To the west of the Salon-Cavaillon fault, on the other hand, gravity induces a NNE motion of the sedimentary cover with extension to the south and shortening to the north near Mont Ventoux. When considering the seismicity of this area, it is thus important to distinguish between the western Basin panel, west of the Salon-Cavaillon fault affected by very slow NNE gliding of the sedimentary cover, with extension to the south and shortening to the north; the central Basin panel west of the Durance fault with S gliding of the sedimentary cover and increasing shortening to the south; and finally the basement panel east of the Durance fault with intrabasement absorption of the Alps collapse through strike-slip and thrust faults.


2020 ◽  
Vol 149 ◽  
pp. 02007
Author(s):  
Andrew Belonosov ◽  
Anton Kudryavtsev ◽  
Sergey Sheshukov ◽  
Dmitry Borisov

In the South of Western Siberia oil-perspectivity Jurassic deposits are characterized by multi – and small-scale. The interpretation of earth remote sensing materials in the visible, near and far infrared ranges allowed to evaluate the oil potential of numerous domes and depressions on the basis of combining geodynamically stressed zones and calculating the physical characteristics of the earth's surface (albedo, radiation coefficient, thermal inertia, convective heat flow, daily evaporation of moisture, DEM, weather conditions, etc.), including the procedure of reference classification, where the standards are the nearest oil and gas condensate fields. The forecast boundary of “oil and gas condensate” lands of the South of Western Siberia is displaced to the latitude of u.v. Lebyazhye of the Eastern part of the Kurgan region.


2019 ◽  
Author(s):  
Anke Dannowski ◽  
Heidrun Kopp ◽  
Ingo Grevemeyer ◽  
Dietrich Lange ◽  
Martin Thowart ◽  
...  

Abstract. The Ligurian Basin is located in the Mediterranean Sea to the north-west of Corsica at the transition from the western Alpine orogen to the Apennine system and was generated by the south-eastward trench retreat of the Apennines-Calabrian subduction zone. Late Oligocene to Miocene rifting caused continental extension and subsidence, leading to the opening of the basin. Yet, it still remains enigmatic if rifting caused continental break-up and seafloor spreading. To reveal its lithospheric architecture, we acquired a state of the art seismic refraction and wide-angle reflection profile in the Ligurian Basin. The seismic line was recorded in the framework of SPP2017 4D-MB, the German component of the European AlpArray initiative, and trends in a NE-SW direction at the centre of the Ligurian Basin, roughly parallel to the French coastline. The seismic data recorded on the newly developed GEOLOG recorder, designed at GEOMAR, are dominated by sedimentary refractions and show mantle Pn arrivals at offsets of up to 70 km and a very prominent wide-angle Moho reflection. The main features share several characteristics (i.e. offset range, continuity) generally associated with continental settings rather than documenting oceanic crust emplaced by seafloor spreading. Seismic tomography results are augmented by gravity data and yield a 7.5–8 km thick sedimentary cover which is directly underlain by serpentinised mantle material at the south-western end of the profile. The acoustic basement at the north-eastern termination is interpreted to be continental crust, thickening towards the NE. Our study reveals that the oceanic domain does not extend as far north as previously assumed and that extension led to extreme continental thinning and exhumation of sub-continental mantle which eventually became serpentinised.


Sign in / Sign up

Export Citation Format

Share Document