The youngest records of mosasaurid reptiles from the Upper Cretaceous of the South-Western Desert in Egypt

Author(s):  
Mohamed K. AbdelGawad ◽  
Gebely A. Abu El-Kheir ◽  
Walid G. Kassab
2016 ◽  
Vol 117 ◽  
pp. 223-234 ◽  
Author(s):  
Hesham M. Sallam ◽  
Patrick M. O'Connor ◽  
Mahmoud Kora ◽  
Joseph J.W. Sertich ◽  
Erik R. Seiffert ◽  
...  

2001 ◽  
Vol 38 (11) ◽  
pp. 1601-1613 ◽  
Author(s):  
E A Christiansen ◽  
E Karl Sauer

The Saskatoon Low is a collapse structure that formed as a result of dissolution of salt from the Middle Devonian Prairie Evaporite Formation. In this study, the collapse has affected the Upper Cretaceous Lea Park, Judith River, and Bearpaw formations of the Montana Group; the Early and Middle Pleistocene Mennon, Dundurn, and Warman formations of the Sutherland Group; and the Late Pleistocene Floral, Battleford, and Haultain formations of the Saskatoon Group. Locally, the collapse is about 180 m, which is about equal to the thickness of the salt. The first phase of collapse took place after deposition of the Ardkenneth Member of the Bearpaw Formation and before glaciation or during a pre-Illinoian glaciation. The second phase of collapse occurred during the Battleford glaciation (Late Wisconsinan). Prior to deposition of the Battleford Formation, the Saskatoon Low was glacially eroded, removing the Sutherland Group and the Floral Formation. After the glacial erosion, up to 110 m of soft till of the Battleford Formation and up to 77 m of deltaic sand, silt, and clay of the Haultain Formation were deposited in the Saskatoon Low. Lastly, the South Saskatchewan River eroded up to about 40 m into the deltaic sediment and tills before up to about 15 m of Pike Lake Formation was deposited. The Haultain and Pike Lake formations are new stratigraphic units.


2014 ◽  
Vol 34 (4) ◽  
pp. 760-766 ◽  
Author(s):  
Kerin M. Claeson ◽  
Hesham M. Sallam ◽  
Patrick M. O’Connor ◽  
Joseph J. W. Sertich

1964 ◽  
Vol S7-VI (4) ◽  
pp. 545-553 ◽  
Author(s):  
Fernand Touraine

Abstract The Sainte-Victoire mountain in southern France has been considered the overturned southern limb of the Vauvenargues anticline, but the structure east of the Delubre fault is complicated by an oblique fold. The western margin is concealed by transgressive Tortonian (middle Miocene) beds covering the plateau of Beaumettes. The anticline probably is upper Cretaceous. Folding was renewed in the upper Lutetian (middle Eocene), and resulted in overturning and thrust faulting of the south limb. Subsequent normal faulting compartmented the mass, resulting in selective differential movement of blocks as horsts and grabens. The term piano keys structure is given to this type of structure.


2019 ◽  
Vol 10 (2) ◽  
pp. 371-393
Author(s):  
Mohamed F. Abu-Hashish ◽  
Hamdalla A. Wanas ◽  
Emad Madian

Abstract This study aims to construct 3D geological model using the integration of seismic data with well log data for reservoir characterization and development of the hydrocarbon potentialities of the Upper Cretaceous reservoirs of GPT oil field. 2D seismic data were used to construct the input interpreted horizon grids and fault polygons. The horizon which cut across the wells was used to perform a comprehensive petrophysical analysis. Structural and property modeling was distributed within the constructed 3D grid using different algorithms. The workflow of the 3D geological model comprises mainly the structural and property modeling. The structural model includes fault framework, pillar girding, skeleton girding, horizon modeling and zonation and layering modeling processes. It shows system of different oriented major and minor faults trending in NE–SW direction. The property modeling process was performed to populate the reservoir facies and petrophysical properties (volume of shale (Vsh), fluid saturations (Sw and Sh), total and effective porosities (Φt and Φe), net to gross thickness and permeability) as extracted from the available petrophysical analysis of wells inside the structural model. The model represents a detailed zonation and layering configuration for the Khoman, Abu Roash and Bahariya formations. The 3D geological model helps in the field development and evaluates the hydrocarbon potentialities and optimizes production of the study area. It can be also used to predict reservoir shape and size, lateral continuity and degree of interconnectivity of the reservoir, as well as its internal heterogeneity.


The Aquitaine Basin, situated in southwest France, with an area of about 60 000 km 2 , has the form of a triangle which opens towards the Atlantic (Bay of Biscay) and is limited to the north by the Hercynian basement of Brittany and the Massif Central, and to the south by the Pyrenean Tertiary orogenic belt. Beneath the Tertiary sequence (2 km thick, and which outcrops over much of the basin) a Mesozoic series, up to 10 km thick, rests generally on a tectonized Hercynian basement but locally it covers narrow (NW-SE-trending) post-orogenic trenches of Stephano-Permian age. The Mesozoic history can be subdivided into four major structural-sedimentary episodes: (1) during a Triassic taphrogenic phase a continental-evaporitic complex developed with associated basic magmatism; (2) throughout the Jurassic, a vast lagoonal platform developed, initially (Lower Lias) as a thick evaporitic sequence followed by a uniform shale-carbonate unit, indicating a relative structural stability; (3) the end of the Jurassic and the Lower Cretaceous saw a fragmentation of this platform, due to an interplay between the Iberian and European tectonic plates, resulting in an ensemble of strongly subsident sub-basins; (4) during the Upper Cretaceous and until the end of the Neogene, the evolution of the Aquitaine Basin was influenced by the Pyrenean orogenic phase, with the development, towards the south, of a trench infilled by flysch which, from the Upper Eocene, is succeeded by a thick post-orogenic molasse complex. The main hydrocarbon objectives in the basin are situated in the Jurassic platform (e.g. the Lacq giant gas field) and the Cretaceous sub-basins (e.g. the Cazaux and Parentis oil fields). To date, production has been about 4 x 10 7 m 3 of oil, and about 15 x 10 10 m 3 of gas since the first gas discovery (St Marcet) in 1939.


Sign in / Sign up

Export Citation Format

Share Document