Petrogenesis of Dehsard felsic rocks in the southwest of Kerman, Iran: Inference for the evolution of Sanandaj-Sirjan zone

2020 ◽  
Vol 172 ◽  
pp. 103978
Author(s):  
Mehdi Ebrahimnejad ◽  
Mohsen Arvin ◽  
Sara Dargahi
Author(s):  
Jia Chang ◽  
Andreas Audétat ◽  
Jian-Wei Li

Abstract Two suites of amphibole-rich mafic‒ultramafic rocks associated with the voluminous intermediate to felsic rocks in the Early Cretaceous Laiyuan intrusive-volcanic complex (North China Craton) are studied here by detailed petrography, mineral- and melt inclusion chemistry, and thermobarometry to demonstrate an in-situ reaction-replacement origin of the hornblendites. Moreover, a large set of compiled and newly obtained geochronological and whole-rock elemental and Sr-Nd isotopic data are used to constrain the tectono-magmatic evolution of the Laiyuan complex. Early mafic‒ultramafic rocks occur mainly as amphibole-rich mafic‒ultramafic intrusions situated at the edge of the Laiyuan complex. These intrusions comprise complex lithologies of olivine-, pyroxene- and phlogopite-bearing hornblendites and various types of gabbroic rocks, which largely formed by in-situ crystallization of hydrous mafic magmas that experienced gravitational settling of early-crystallized olivine and clinopyroxene at low pressures of 0.10‒0.20 GPa (∼4‒8 km crustal depth); the hornblendites formed in cumulate zones by cooling-driven crystallization of 55‒75 vol% hornblende, 10‒20 vol% orthopyroxene and 3‒10 vol% phlogopite at the expense of olivine and clinopyroxene. A later suite of mafic rocks occurs as mafic lamprophyre dikes throughout the Laiyuan complex. These dikes occasionally contain some pure hornblendite xenoliths, which formed by reaction-replacement of clinopyroxene at high pressures of up to 0.97‒1.25 GPa (∼37‒47 km crustal depth). Mass balance calculations suggest that the olivine-, pyroxene- and phlogopite-bearing hornblendites in the early mafic‒ultramafic intrusions formed almost without melt extraction, whereas the pure hornblendites brought up by lamprophyre dikes required extraction of ≥ 20‒30 wt% residual andesitic to dacitic melts. The latter suggests that fractionation of amphibole in the middle to lower crust through the formation of reaction-replacement hornblendites is a viable way to produce adakite-like magmas. New age constraints suggest that the early mafic-ultramafic intrusions formed during ∼132‒138 Ma, which overlaps with the timespan of ∼126‒145 Ma recorded by the much more voluminous intermediate to felsic rocks of the Laiyuan complex. By contrast, the late mafic and intermediate lamprophyre dikes were emplaced during ∼110‒125 Ma. Therefore, the voluminous early magmatism in the Laiyuan complex was likely triggered by the retreat of the flat-subducting Paleo-Pacific slab, whereas the minor later, mafic to intermediate magmas may have formed in response to further slab sinking-induced mantle thermal perturbations. Whole-rock geochemical data suggest that the early mafic magmas formed by partial melting of subduction-related metasomatized lithospheric mantle, and that the early intermediate to felsic magmas with adakite-like signatures formed from mafic magmas through strong amphibole fractionation without plagioclase in the lower crust. The late mafic magmas seem to be derived from a slightly different metasomatized lithospheric mantle by lower degrees of partial melting.


Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 842
Author(s):  
Kouhei Asano ◽  
Katsuyoshi Michibayashi ◽  
Tomohiro Takebayashi

Deformation microstructures of peak metamorphic conditions in ultrahigh-pressure (UHP) metamorphic rocks constrain the rheological behavior of deeply subducted crustal material within a subduction channel. However, studies of such rocks are limited by the overprinting effects of retrograde metamorphism during exhumation. Here, we present the deformation microstructures and crystallographic-preferred orientation data of minerals in UHP rocks from the Dabie–Shan to study the rheological behavior of deeply subducted continental material under UHP conditions. The studied samples preserve deformation microstructures that formed under UHP conditions and can be distinguished into two types: high-strain mafic–ultramafic samples (eclogite and garnet-clinopyroxenite) and low-strain felsic samples (jadeite quartzite). This distinction suggests that felsic rocks are less strained than mafic–ultramafic rocks under UHP conditions. We argue that the phase transition from quartz to coesite in the felsic rocks may explain the microstructural differences between the studied mafic–ultramafic and felsic rock samples. The presence of coesite, which has a higher strength than quartz, may result in an increase in the bulk strength of felsic rocks, leading to strain localization in nearby mafic–ultramafic rocks. The formation of shear zones associated with strain localization under HP/UHP conditions can induce the detachment of subducted crustal material from subducting lithosphere, which is a prerequisite for the exhumation of UHP rocks. These findings suggest that coesite has an important influence on the rheological behavior of crustal material that is subducted to coesite-stable depths.


2018 ◽  
Vol 309 ◽  
pp. 22-44 ◽  
Author(s):  
Wei Terry Chen ◽  
Wei-Hua Sun ◽  
Mei-Fu Zhou ◽  
Wei Wang

Lithos ◽  
2018 ◽  
Vol 308-309 ◽  
pp. 364-380 ◽  
Author(s):  
Hossein Azizi ◽  
Federico Lucci ◽  
Robert J. Stern ◽  
Shima Hasannejad ◽  
Yoshihiro Asahara

2021 ◽  
Author(s):  
Nalan Lom ◽  
Abdul Qayyum ◽  
Derya Gürer ◽  
Douwe G. van der Meer ◽  
Wim Spakman ◽  
...  

<p>Iran is a mosaic of continental blocks that are surrounded by Tethyan oceanic relics. Remnants of these oceanic rock assemblages are exposed around the Central Iranian Microcontinent (CIM), discretely along the Sanandaj-Sirjan Zone and in Jaz-Murian. The ophiolite belts surrounding the CIM are mainly assumed to represent narrow back-arc basins that opened in Cretaceous and closed before the Eocene. Although these ophiolites are exposed as small pieces on continental crust today, they represent oceans wide enough to form supra-subduction ophiolites and arc-related magmatic rocks which suggest that their palaeogeographic width was at least some hundreds of kilometers. Current models for the palaeogeographic dimension, opening and closure of these basins are highly schematic. They usually seem plausible in two-dimensional reconstructions, however a single three-dimensional model explaining whole Iran and its surrounding regions has not been fully accomplished.  This is mostly because while the geological record provides constraints on the origin and ages of the subducted ocean floor, it provides limited information about onset and cessation of the subduction and almost no constraints on the dimension of these oceans and the subduction zones that consumed them.</p><p>In this study, we follow a novel approach in estimating the dimension and evolution of these back-arc basin by using seismic tomography. Seismic tomography has revealed that we can image and trace subducted lithosphere relics. Imaged mantle structure is now being used to link sinking slabs with sutures and to define shape of a slab. Systematic comparison of regions where the timing of subduction is reasonably well constrained by geological data showed that slabs sink gradually through the mantle at rates more or less the same. This perspective enabled us to study slab shape as a function of absolute trench motion. While mantle stationary trenches tend to create steep slabs or slab walls, the flat-lying segments are formed where the overlying trenches are mobile relative to the mantle, normal facing during roll-back, overturned during slab advance.  Under the assumption of vertical sinking after break-off, it is also possible to locate the palaeo-trenches.  When combined with absolute plate motion reconstructions, tomographically determined volume and size of the subducted lithosphere can also be used to estimate the size/width of the prehistoric oceans. To this end, we build on and further develop concepts that relate absolute trench motion during subduction to modern slab geometry to evaluate the possible range of dimensions associated with opening and closure of the Iranian back-arc basins.</p>


Sign in / Sign up

Export Citation Format

Share Document