Large-scale Late Triassic to Early Jurassic high εHf(t)–εNd(t) felsic rocks in the Ergun Massif (NE China): implications for southward subduction of the Mongol–Okhotsk oceanic slab and lateral crustal growth

Author(s):  
Yinglei Li ◽  
Guang Wu ◽  
Shengjin Zhao ◽  
Gongzheng Chen ◽  
Fei Yang ◽  
...  
Minerals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 80 ◽  
Author(s):  
Nan Ju ◽  
Yun-Sheng Ren ◽  
Sen Zhang ◽  
Zhong-Wei Bi ◽  
Lei Shi ◽  
...  

The Saima deposit is a newly discovered niobium deposit which is located in the eastern of Liaoning Province, NE China. Its mineralization age and geochemical characteristics are firstly reported in this study. The Nb orebodies are hosted by the grey–brown to grass-green aegirine nepheline syenite. Detailed petrographical studies show that the syenite consists of orthoclase (~50%), nepheline (~30%), biotite (~15%) and minor arfvedsonite (~3%) and aegirine (~2%), with weak hydrothermal alteration dominated by silicification. In situ LA-ICP-MS zircon U-Pb dating indicates that the aegirine nepheline syenite was emplaced in the Late Triassic (229.5 ± 2.2 Ma), which is spatially, temporally and genetically related to Nb mineralization. These aegirine nepheline syenites have SiO2 contents in the range of 55.86–63.80 wt. %, low TiO2 contents of 0.36–0.64 wt. %, P2O5 contents of 0.04–0.11 wt. % and Al2O3 contents of more than 15 wt. %. They are characterized by relatively high (K2O + Na2O) values of 9.72–15.51 wt. %, K2O/Na2O ratios of 2.42–3.64 wt. % and Rittmann indexes (σ = [ω(K2O + Na2O)]2/[ω(SiO2 − 43)]) of 6.84–17.10, belonging to the high-K peralkaline, metaluminous type. These syenites are enriched in large ion lithophile elements (LILEs, e.g., Cs, Rb and Ba) and light rare earth elements (LREEs) and relatively depleted in high field strength elements (HFSEs, e.g., Nb, Zr and Ti) and heavy rare earth elements (HREEs), with transitional elements showing an obvious W-shaped distribution pattern. Based on these geochronological and geochemical features, we propose that the ore-forming intrusion associated with the Nb mineralization was formed under post-collision continental-rift setting, which is consistent with the tectonic regime of post-collision between the North China Craton and Paleo-Asian oceanic plate during the age in Ma for Indosinian (257–205 Ma). Intensive magmatic and metallogenic events resulted from partial melting of lithospheric mantle occurred during the post-collisional rifting, resulting in the development of large-scale Cu–Mo mineralization and rare earth deposits in the eastern part of Liaoning Province.


2021 ◽  
Author(s):  
Nicolas Dall'asta ◽  
Guilhem Hoareau ◽  
Gianreto Manatschal ◽  
Charlotte Ribes

<p><strong> </strong>The external crystalline massifs of the Alps, which include the Mont-Blanc massif, are found in between the external and internal parts of the orogen. The external parts correspond to the proximal domain of the Alpine Tethys (Helvetic domain), whereas the internal part corresponds to the former distal domain of the margin (Penninic domain). Therefore, the Mont-Blanc massif is a key place for understanding the proximal-distal transition during Jurassic rifting of the Alpine Tethys. </p><p>Despite numerous seismic observations at modern passive margins, the tectono-sedimentary and fluid evolution recorded in these domains called necking zone remain poorly understood. Many questions remain concerning the thermal evolution, the origin and composition of the fluids, their link to large-scale hydrothermal systems, and the impact of element transfer on the diagenesis of syn-rift sediments.</p><p> </p><p>Here we focus on the Col du Bonhomme (southern Mont-Blanc massif near Bourg St-Maurice, France), where late Triassic / early Jurassic to late Jurassic sediments preserve pre-Alpine contacts between the sediment and the basement.  The syn-rift sedimentary tract is composed of Sinemurian to Pliensbachian sandstones called “Grès Singuliers”, lying unconformably above the pre-rift and over an exhumed fault plane corresponding to the top basement.</p><p>Characterization of the faults and overlying sediments requires a multi-scale and multi-disciplinary approach combining field observation, petrography, sedimentology, structural geology, and geochemistry. The protolith of the fault rocks is a Variscan migmatitic gneiss. The damaged zone consists of cataclasites and the core zone is made of black gouge. The gouge is overlaid conformably by Liassic sandstones that contain reworked clasts of cataclasite. The observations that the top basement fault is cut by a Pliensbachian high-angle normal fault and Triassic clasts occur in the gouge enables to date this fault as Early Jurassic. </p><p>At the micro scale, the basement shows hydratation leading to chloritization of biotite and sericitisation of feldspaths (orthoclase and plagioclase). A strong hydration-assisted deformation with increase of deformation toward the fault core leads to the formation of cataclasites. They are composed of quartz, sericite with small remnants of orthoclase, chlorites with secondary pyrites and rutiles. The fault core is a black gouge with grain size comminuition and mineral neoformation.</p><p>Evidence for fluid flow is observed in the fault leading to the hydrothermal alteration of the basement (sericitisation of feldspath and corrosion of quartz)  and the formation of syn-gouge quartz and quartz-adularia veins in the black gouge (datation using the Rb-Sr an adularia and U-Pb on calcite method is in progress) . </p><p>Based on our observations we interpret the fault observed at Col du Bonhomme as a Jurassic exhumation fault associated with the necking of the European crust during Jurassic rifting. This preliminary work shows that the fault acted as an important pathway for crustal fluids with important transfer of silica and at least K, Fe and Ti.  The Col du Bonhomme area gives an opportunity to study fluid circulation and basement alteration along a rift-related detachment fault in the necking domain and therefore to understand fluid-mediated element mobility during rifting.</p><p><strong>Keywords :</strong> Detachment fault, Mont-Blanc massif, Fluid circulation , Alpine Tethys, Necking zone</p>


2004 ◽  
Vol 41 (1) ◽  
pp. 103-125 ◽  
Author(s):  
Nathan T Petersen ◽  
Paul L Smith ◽  
James K Mortensen ◽  
Robert A Creaser ◽  
Howard W Tipper

Jurassic sedimentary rocks of southern to central Quesnellia record the history of the Quesnellian magmatic arc and reflect increasing continental influence throughout the Jurassic history of the terrane. Standard petrographic point counts, geochemistry, Sm–Nd isotopes and detrital zircon geochronology, were employed to study provenance of rocks obtained from three areas of the terrane. Lower Jurassic sedimentary rocks, classified by inferred proximity to their source areas as proximal or proximal basin are derived from an arc source area. Sandstones of this age are immature. The rocks are geochemically and isotopically primitive. Detrital zircon populations, based on a limited number of analyses, have homogeneous Late Triassic or Early Jurassic ages, reflecting local derivation from Quesnellian arc sources. Middle Jurassic proximal and proximal basin sedimentary rocks show a trend toward more evolved mature sediments and evolved geochemical characteristics. The sandstones show a change to more mature grain components when compared with Lower Jurassic sedimentary rocks. There is a decrease in εNdT values of the sedimentary rocks and Proterozoic detrital zircon grains are present. This change is probably due to a combination of two factors: (1) pre-Middle Jurassic erosion of the Late Triassic – Early Jurassic arc of Quesnellia, making it a less dominant source, and (2) the increase in importance of the eastern parts of Quesnellia and the pericratonic terranes, such as Kootenay Terrane, both with characteristically more evolved isotopic values. Basin shale environments throughout the Jurassic show continental influence that is reflected in the evolved geochemistry and Sm–Nd isotopes of the sedimentary rocks. The data suggest southern Quesnellia received material from the North American continent throughout the Jurassic but that this continental influence was diluted by proximal arc sources in the rocks of proximal derivation. The presence of continent-derived material in the distal sedimentary rocks of this study suggests that southern Quesnellia is comparable to known pericratonic terranes.


2018 ◽  
Vol 158 (1) ◽  
pp. 143-157 ◽  
Author(s):  
Guangying Feng ◽  
Yildirim Dilek ◽  
Xiaolu Niu ◽  
Fei Liu ◽  
Jingsui Yang

AbstractThe Zhangguangcai Range in the Xing’an Mongolian Orogenic Belt, NE China, contains Early Jurassic (c. 188 Ma) Dabaizigou (DBZG) porphyritic dolerite. Compared with other island-arc mafic rocks, the DBZG dolerite is characterized by high trace-element contents, relatively weak Nb and Ta enrichments, and no Zr, Hf or Ti depletions, similar to OIB-type rocks. Analysed rocks have (87Sr/86Sr)i ratios of 0.7033–0.7044, relatively uniform positive ɛNd(t) values of 2.3–3.2 and positive ɛHf(t) values of 8.5–17.1. Trace-element and isotopic modelling indicates that the DBZG mafic rocks were generated by partial melting of asthenospheric mantle under garnet- to spinel-facies conditions. The occurrence of OIB-like mafic intrusion suggests significant upwelling of the asthenosphere in response to lithospheric attenuation caused by continental rifting. These processes occurred in an incipient continental back-arc environment in the upper plate of a palaeo-Pacific slab subducting W–NW beneath East Asia.


Solid Earth ◽  
2018 ◽  
Vol 9 (6) ◽  
pp. 1375-1397 ◽  
Author(s):  
Yi Ni Wang ◽  
Wen Liang Xu ◽  
Feng Wang ◽  
Xiao Bo Li

Abstract. To investigate the timing of deposition and provenance of early Mesozoic strata in the northeastern North China Craton (NCC) and to understand the early Mesozoic paleotectonic evolution of the region, we combine stratigraphy, U–Pb zircon geochronology, and Hf isotopic analyses. Early Mesozoic strata include the Early Triassic Heisonggou, Late Triassic Changbai and Xiaoyingzi, and Early Jurassic Yihe formations. Detrital zircons in the Heisonggou Formation yield  ∼ 58 % Neoarchean to Paleoproterozoic ages and  ∼ 42 % Phanerozoic ages and were sourced from areas to the south and north of the basins within the NCC, respectively. This indicates that Early Triassic deposition was controlled primarily by the southward subduction of the Paleo-Asian oceanic plate beneath the NCC and collision between the NCC and the Yangtze Craton (YC). Approximately 88 % of the sediments within the Late Triassic Xiaoyingzi Formation were sourced from the NCC to the south, with the remaining  ∼ 12 % from the Xing'an–Mongolia Orogenic Belt (XMOB) to the north. This implies that Late Triassic deposition was related to the final closure of the Paleo-Asian Ocean during the Middle Triassic and the rapid exhumation of the Su–Lu Orogenic Belt between the NCC and YC. In contrast,  ∼ 88 % of sediments within the Early Jurassic Yihe Formation were sourced from the XMOB to the north, with the remaining  ∼ 12 % from the NCC to the south. We therefore infer that rapid uplift of the XMOB and the onset of the subduction of the Paleo-Pacific Plate beneath Eurasia occurred in the Early Jurassic.


Sign in / Sign up

Export Citation Format

Share Document