scholarly journals Rheological Contrast between Quartz and Coesite Generates Strain Localization in Deeply Subducted Continental Crust

Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 842
Author(s):  
Kouhei Asano ◽  
Katsuyoshi Michibayashi ◽  
Tomohiro Takebayashi

Deformation microstructures of peak metamorphic conditions in ultrahigh-pressure (UHP) metamorphic rocks constrain the rheological behavior of deeply subducted crustal material within a subduction channel. However, studies of such rocks are limited by the overprinting effects of retrograde metamorphism during exhumation. Here, we present the deformation microstructures and crystallographic-preferred orientation data of minerals in UHP rocks from the Dabie–Shan to study the rheological behavior of deeply subducted continental material under UHP conditions. The studied samples preserve deformation microstructures that formed under UHP conditions and can be distinguished into two types: high-strain mafic–ultramafic samples (eclogite and garnet-clinopyroxenite) and low-strain felsic samples (jadeite quartzite). This distinction suggests that felsic rocks are less strained than mafic–ultramafic rocks under UHP conditions. We argue that the phase transition from quartz to coesite in the felsic rocks may explain the microstructural differences between the studied mafic–ultramafic and felsic rock samples. The presence of coesite, which has a higher strength than quartz, may result in an increase in the bulk strength of felsic rocks, leading to strain localization in nearby mafic–ultramafic rocks. The formation of shear zones associated with strain localization under HP/UHP conditions can induce the detachment of subducted crustal material from subducting lithosphere, which is a prerequisite for the exhumation of UHP rocks. These findings suggest that coesite has an important influence on the rheological behavior of crustal material that is subducted to coesite-stable depths.

2020 ◽  
Vol 6 (11) ◽  
pp. eaay5178
Author(s):  
D. S. Keller ◽  
J. J. Ague

Diamond and coesite are classic indicators of ultrahigh-pressure (UHP; ≥100-kilometer depth) metamorphism, but they readily recrystallize during exhumation. Crystallographically oriented pyroxene and amphibole exsolution lamellae in garnet document decomposed supersilicic UHP majoritic garnet originally stable at diamond-grade conditions, but majoritic precursors have only been quantitatively demonstrated in mafic and ultramafic rocks. Moreover, controversy persists regarding which silicates majoritic garnet breakdown produces. We present a method for reconstructing precursor majoritic garnet chemistry in metasedimentary Appalachian gneisses containing garnets preserving concentric zones of crystallographically oriented lamellae including quartz, amphibole, and sodium phlogopite. We link this to novel quartz-garnet crystallographic orientation data. The results reveal majoritic precursors stable at ≥175-kilometer depth and that quartz and mica may exsolve from garnet. Large UHP terranes in the European Caledonides formed during collision of the paleocontinents Baltica and Laurentia; we demonstrate UHP metamorphism from the microcontinent-continent convergence characterizing the contiguous and coeval Appalachian orogen.


Author(s):  
Jia Chang ◽  
Andreas Audétat ◽  
Jian-Wei Li

Abstract Two suites of amphibole-rich mafic‒ultramafic rocks associated with the voluminous intermediate to felsic rocks in the Early Cretaceous Laiyuan intrusive-volcanic complex (North China Craton) are studied here by detailed petrography, mineral- and melt inclusion chemistry, and thermobarometry to demonstrate an in-situ reaction-replacement origin of the hornblendites. Moreover, a large set of compiled and newly obtained geochronological and whole-rock elemental and Sr-Nd isotopic data are used to constrain the tectono-magmatic evolution of the Laiyuan complex. Early mafic‒ultramafic rocks occur mainly as amphibole-rich mafic‒ultramafic intrusions situated at the edge of the Laiyuan complex. These intrusions comprise complex lithologies of olivine-, pyroxene- and phlogopite-bearing hornblendites and various types of gabbroic rocks, which largely formed by in-situ crystallization of hydrous mafic magmas that experienced gravitational settling of early-crystallized olivine and clinopyroxene at low pressures of 0.10‒0.20 GPa (∼4‒8 km crustal depth); the hornblendites formed in cumulate zones by cooling-driven crystallization of 55‒75 vol% hornblende, 10‒20 vol% orthopyroxene and 3‒10 vol% phlogopite at the expense of olivine and clinopyroxene. A later suite of mafic rocks occurs as mafic lamprophyre dikes throughout the Laiyuan complex. These dikes occasionally contain some pure hornblendite xenoliths, which formed by reaction-replacement of clinopyroxene at high pressures of up to 0.97‒1.25 GPa (∼37‒47 km crustal depth). Mass balance calculations suggest that the olivine-, pyroxene- and phlogopite-bearing hornblendites in the early mafic‒ultramafic intrusions formed almost without melt extraction, whereas the pure hornblendites brought up by lamprophyre dikes required extraction of ≥ 20‒30 wt% residual andesitic to dacitic melts. The latter suggests that fractionation of amphibole in the middle to lower crust through the formation of reaction-replacement hornblendites is a viable way to produce adakite-like magmas. New age constraints suggest that the early mafic-ultramafic intrusions formed during ∼132‒138 Ma, which overlaps with the timespan of ∼126‒145 Ma recorded by the much more voluminous intermediate to felsic rocks of the Laiyuan complex. By contrast, the late mafic and intermediate lamprophyre dikes were emplaced during ∼110‒125 Ma. Therefore, the voluminous early magmatism in the Laiyuan complex was likely triggered by the retreat of the flat-subducting Paleo-Pacific slab, whereas the minor later, mafic to intermediate magmas may have formed in response to further slab sinking-induced mantle thermal perturbations. Whole-rock geochemical data suggest that the early mafic magmas formed by partial melting of subduction-related metasomatized lithospheric mantle, and that the early intermediate to felsic magmas with adakite-like signatures formed from mafic magmas through strong amphibole fractionation without plagioclase in the lower crust. The late mafic magmas seem to be derived from a slightly different metasomatized lithospheric mantle by lower degrees of partial melting.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Quanlin Hou ◽  
Hongyuan Zhang ◽  
Qing Liu ◽  
Jun Li ◽  
Yudong Wu

A previous study of the Dabie area has been supposed that a strong extensional event happened between the Yangtze and North China blocks. The entire extensional system is divided into the Northern Dabie metamorphic complex belt and the south extensional tectonic System according to geological and geochemical characteristics in our study. The Xiaotian-Mozitan shear zone in the north boundary of the north system is a thrust detachment, showing upper block sliding to the NNE, with a displacement of more than 56 km. However, in the south system, the shearing direction along the Shuihou-Wuhe and Taihu-Mamiao shear zones is tending towards SSE, whereas that along the Susong-Qingshuihe shear zone tending towards SW, with a displacement of about 12 km. Flinn index results of both the north and south extensional systems indicate that there is a shear mechanism transition from pure to simple, implying that the extensional event in the south tectonic system could be related to a magma intrusion in the Northern Dabie metamorphic complex belt. Two 40Ar-39Ar ages of mylonite rocks in the above mentioned shear zones yielded, separately, ~190 Ma and ~124 Ma, referring to a cooling age of ultrahigh-pressure rocks and an extensional era later.


2021 ◽  
Author(s):  
Anthony Jourdon ◽  
Charlie Kergaravat ◽  
Guillaume Duclaux ◽  
Caroline Huguen

Abstract. Transform margins represent ~30 % of the non-convergent margins worldwide. Their formation and evolution have long been addressed through kinematic models that do not account for the mechanical behaviour of the lithosphere. In this study, we use high resolution 3D numerical thermo-mechanical modelling to simulate and investigate the evolution of the intra-continental strain localization under oblique extension. The obliquity is set through velocity boundary conditions that range from 15° (high obliquity) to 75° (low obliquity) every 15° for strong and weak lower continental crust rheologies. Numerical models show that the formation of localized strike-slip shear zones leading to transform continental margins always follows a thinning phase during which the lithosphere is thermally and mechanically weakened. For low (75°) to intermediate (45°) obliquity cases, the strike-slip faults are not parallel to the extension direction but form an angle of 20° to 40° with the plates' motion while for higher obliquities (30° to 15°) the strike-slip faults develop parallel to the extension direction. Numerical models also show that during the thinning of the lithosphere, the stress and strain re-orient while boundary conditions are kept constant. This evolution, due to the weakening of the lithosphere, leads to a strain localization process in three major phases: (1) strain initiates in a rigid plate where structures are sub-perpendicular to the extension direction; (2) distributed deformation with local stress field variations and formation of transtensional and strike-slip structures; (3) formation of highly localized plates boundaries stopping the intra-continental deformation. Our results call for a thorough re-evaluation of the kinematic approach to studying transform margins.


2021 ◽  
Vol 57 (1) ◽  
pp. 1
Author(s):  
Anastasios Plougarlis ◽  
Markos Tranos ◽  
Lambrini Papadopoulou

The lithologies and structural features of the exposed rocks of the Serbo-Macedonian massif in the Vertiskos and Kerdilion Mts. have been studied in detail by carrying out km-long cross-sections. Moreover, a new tectonostratigraphic architecture for the massif is proposed, based on the migmatization and anatexis that the rocks pertain, under which the specific exposed rocks have been placed into the Vertiskos and Kerdilion Units. The latter approach differs from the traditional view, which is based solely on the lithological difference between the units. In particular, in the Vertiskos Mt., mica schists, garnet-bearing two-mica gneisses, and predominantly two-mica gneisses, without a sign of anatexis and migmatization, overlie tectonically, biotite gneisses and layered amphibolite gneisses into which migmatization and anatexis takes place. The former constitute the Vertiskos Unit, whereas the latter have been grouped into the Kerdilion Unit, since they are of similar lithologies and affinities with rocks of the Kerdilion Unit. The Kerdilion Mt. is a large antiform made up of biotite gneisses alternating with marbles, which are similarly characterized by intense migmatization and anatexis. These rocks are intruded by the Oreskia granite, which is foliated and follows the general trend of the country rocks. All the rocks are folded with isoclinal to tight folds, and the contact between the two units is a mylonitic shear zone with a top-to-the-SW sense-of-shear. Also, a large volume of ultramafic rocks occurs between the Vertiskos and Kerdilion Mts., including metamorphosed rocks like metagabbros to massive amphibolites, which is assigned to the Therma-Volvi-Gomati Complex (TVGC). These rocks have been found in tectonic contact, i.e., shear zones with top-to-the-SW sense-of-shear, only with the rocks of the Kerdilion Unit. Taking into account our new tectonostratigraphic architecture, the contact between the Vertiskos and Kerdilion Units is not located along the western side of the marbles, as the latter are exposed in the Kerdilion Mt. It is traced westerly in the Vertiskos Mt. dipping with intermediate angles towards the SW, due to NW-trending, map-scale, isoclinal folding. The ultramafic rocks of the TVGC are in tectonic contact with the rocks of the Kerdilion Unit, but not the two-mica gneisses of the Vertiskos Unit, and the Arnea granite intrudes not only the Vertiskos Unit as previously considered, but the rocks of the Kerdilion Unit, as well.


2015 ◽  
Vol 7 (1) ◽  
Author(s):  
Satyanarayanan Manavalan ◽  
Surya Prakash Singh ◽  
Vysetti Balaram ◽  
Mohanty Niranjan

Abstract The southern part of the Bundelkhand craton contains a series of a E-W trending mafic and ultramafic rocks, about 40 km in length and 2–4 km wide, that occur as intrusions within the Bundelkhand Gneissic Complex (BnGC). They are confined between the Madawara- Karitoran and Sonrai-Girar shear zones. Dunite, harzburgite, lherzolite and websterite are the commonly occurring ultramafic rocks that have high MgO, Ni, Cr, PGE and low Al2O3, CaO, K2O, TiO2 and V contents, and shows peridotitic affinity. A distinct trend of crystallization from peridotite to komatiitic basalt has been inferred from geochemical plots, which also indicates the occurrence of at least two varieties among the ultramafic suite of the Madawara ultramafic complex, namely, Group I comprising dunite, spinel peridotite, harzburgite and lherzolite, and Group II consisting of pyroxenite, websterite and olivine websterite. In several places, the rocks of Group II have an intrusive relationship with Group I, and are relatively enriched in total platinum group elements (PGE ~ 300 ppb). The discrimination diagrams suggest that the PGE are enriched in low sulphur-fugacity source magma at moderate to deeper depths by high degree of partial melting of the mantle.


Geology ◽  
1995 ◽  
Vol 23 (8) ◽  
pp. 743 ◽  
Author(s):  
Bradley R. Hacker ◽  
Lothar Ratschbacher ◽  
Laura Webb ◽  
Dong Shuwen

Sign in / Sign up

Export Citation Format

Share Document