Low temperature thermal expansion, high temperature electrical conductivity, and mechanical properties of Nb4AlC3 ceramic synthesized by spark plasma sintering

2009 ◽  
Vol 487 (1-2) ◽  
pp. 675-681 ◽  
Author(s):  
Chunfeng Hu ◽  
Yoshio Sakka ◽  
Hidehiko Tanaka ◽  
Toshiyuki Nishimura ◽  
Salvatore Grasso
2006 ◽  
Vol 21 (6) ◽  
pp. 1460-1466 ◽  
Author(s):  
Diletta Sciti ◽  
Laura Silvestroni ◽  
Alida Bellosi

HfB2–15 vol% MoSi2 composites were produced from powder mixtures and densified through different techniques, namely hot pressing and spark plasma sintering. Dense materials were obtained at 1900 °C by hot pressing and at 1750 °C by spark plasma sintering. Microstructure and mechanical properties were compared. The most relevant result was for high-temperature strength: independent of the processing technique, the flexural strength in air at 1500 °C was higher than 500 MPa.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4893
Author(s):  
Ziyang Xiu ◽  
Boyu Ju ◽  
Saiyue Liu ◽  
Yiwei Song ◽  
Jindan Du ◽  
...  

In this paper, six-layer AlN/Al gradient composites were prepared by a spark plasma sintering process to study the influences of sintering temperature and holding time on the microstructure and mechanical properties. The well-bonded interface enables the composite to exhibit excellent thermal and mechanical properties. The hardness and thermal expansion properties of the composite exhibit a gradient property. The hardness increased with the volume fraction of AlN while the CTE decreased as the volume fraction of AlN. The thermal expansion reaches the lowest value of 13–14 ppm/K, and the hardness reaches the maximum value of 1.25 GPa, when the target volume fraction of AlN is 45%. The simulation results show that this gradient material can effectively reduce the thermal stress caused by the mismatch of the thermal expansion coefficient as a transmitter and receiver (T/R) module. This paper attempts to provide experimental support for the preparation of gradient Al matrix composites.


Crystals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 29
Author(s):  
Shi Tian ◽  
Zelin Liao ◽  
Wenchao Guo ◽  
Qianglong He ◽  
Heng Wang ◽  
...  

TiB2-BN composite ceramics combine excellent electrical conductivity, thermal shock resistance, high-temperature resistance, corrosion resistance, and easy processing of TiB2 and BN. However, in practical applications, their high-temperature oxidation resistance is poor and the resistivity distribution is uneven and changes substantially with temperature. A TiB2-BN-SiC composite ceramic with stable and controllable resistivity was prepared by introducing SiC into the TiB2-BN composite ceramics. In this work, spark plasma sintering (SPS) technology was used to prepare TiB2-BN-SiC composite ceramics with various TiB2-SiC ratios and sintering temperatures. The samples were tested by XRD, SEM, and thermal and mechanical analysis. The results show that as the volume ratio of TiB2-SiC was increased from 3:1 to 12:1, the resistivity of the sample decreased from 8053.3 to 4923.3 μΩ·cm, the thermal conductivity increased from 24.89 to 34.15 W/(m k), and the thermal expansion rate increased from 7.49 (10−6/K) to 10.81 (10−6/K). As the sintering temperature was increased from 1650 to 1950 °C, the density of the sample increased, the mechanical properties were slightly improved, and the resistivity, thermal expansion rate, and thermal conductivity changed substantially. The volume ratio and sintering temperature are the key factors that control the resistivity and thermal characteristics of TiB2-SiC-BN composite ceramics, and the in situ from liquid phases of FeB and FeO also promotes the sintering of the TiB2-BN-SiC ceramics.


Sign in / Sign up

Export Citation Format

Share Document