Microstructure and mechanical properties of Sn–Bi, Sn–Ag and Sn–Zn lead-free solder alloys

2013 ◽  
Vol 572 ◽  
pp. 97-106 ◽  
Author(s):  
Wislei R. Osório ◽  
Leandro C. Peixoto ◽  
Leonardo R. Garcia ◽  
Nathalie Mangelinck-Noël ◽  
Amauri Garcia
2010 ◽  
Vol 2010 (1) ◽  
pp. 000314-000318
Author(s):  
Tong Jiang ◽  
Fubin Song ◽  
Chaoran Yang ◽  
S. W. Ricky Lee

The enforcement of environmental legislation is pushing electronic products to take lead-free solder alloys as the substitute of traditional lead-tin solder alloys. Applications of such alloys require a better understanding of their mechanical behaviors. The mechanical properties of the lead-free solders and IMC layers are affected by the thermal aging. The lead-free solder joints on the pads subject to thermal aging test lead to IMC growth and cause corresponding reliability concerns. In this paper, the mechanical properties of the lead-free solders and IMCs were characterized by nanoindentation. Both the Sn-rich phase and Ag3Sn + β-Sn phase in the lead-free solder joint exhibit strain rate depended and aging soften effect. When lead-free solder joints were subject to thermal aging, Young's modulus of the (Cu, Ni)6Sn5 IMC and Cu6Sn5 IMC changed in very small range. While the hardness value decreased with the increasing of the thermal aging time.


2017 ◽  
Vol 266 ◽  
pp. 196-200 ◽  
Author(s):  
Suchart Chantaramanee ◽  
Phairote Sungkhaphaitoon ◽  
Thawatchai Plookphol

In this research, we investigated the influence of indium and antimony additions on the microstructure, mechanical and thermal properties of Sn-3.0Ag-0.5Cu lead free solder alloys. The results revealed that the addition of 0.5 wt.%InSb into SAC305 solder alloys resulted to a reduced melting temperature by 3.8 °C and IMCs phases formed new Ag3(Sn,In) and SnSb in the Sn-rich matrix with a decreased grain size of 28%. These phases improved the mechanical properties of solder alloys. In addition, the mechanical properties of SAC305 solder alloys increased by adding 0.5 wt.%InSb, resulting in an increase of ultimate tensile strength of 24%, but the percent elongation decreased to 45.8%. Furthermore, the Vickers microhardness slightly increased of the SAC305 solder alloys.


Sign in / Sign up

Export Citation Format

Share Document