Influence of high-power-low-frequency ultrasonic vibration time on the microstructure and mechanical properties of lead-free solder joints

2016 ◽  
Vol 238 ◽  
pp. 8-14 ◽  
Author(s):  
Ai Ting Tan ◽  
Ai Wen Tan ◽  
Farazila Yusof
2010 ◽  
Vol 2010 (1) ◽  
pp. 000314-000318
Author(s):  
Tong Jiang ◽  
Fubin Song ◽  
Chaoran Yang ◽  
S. W. Ricky Lee

The enforcement of environmental legislation is pushing electronic products to take lead-free solder alloys as the substitute of traditional lead-tin solder alloys. Applications of such alloys require a better understanding of their mechanical behaviors. The mechanical properties of the lead-free solders and IMC layers are affected by the thermal aging. The lead-free solder joints on the pads subject to thermal aging test lead to IMC growth and cause corresponding reliability concerns. In this paper, the mechanical properties of the lead-free solders and IMCs were characterized by nanoindentation. Both the Sn-rich phase and Ag3Sn + β-Sn phase in the lead-free solder joint exhibit strain rate depended and aging soften effect. When lead-free solder joints were subject to thermal aging, Young's modulus of the (Cu, Ni)6Sn5 IMC and Cu6Sn5 IMC changed in very small range. While the hardness value decreased with the increasing of the thermal aging time.


Author(s):  
Mohd Aminul Hoque ◽  
Md Mahmudur Chowdhury ◽  
Sa’d Hamasha ◽  
Jeffrey C. Suhling ◽  
Pradeep Lall

Abstract Solder joint reliability is a chief concern in electronic assemblies. Electronic packages consist of various materials, each having their own Coefficient of Thermal Expansion (CTE). When assembled packages experience high temperature gradients and thermal cycles, a mismatch in the CTE values brings about cyclic shear strains in the solder joints, which can ultimately lead to failure. Thus, it is important to understand the effects of shear cycling on the damage accumulated in solder joints. Previous studies conducted on the effect of mechanical cycling on the material behavior of lead free solders have been performed on bulk samples subjected to tension and compression. Our goal in this study was to determine the evolution of the mechanical properties of doped lead free solder joints when subjected to mechanical shear cycling. Experiments conducted on actual solder joints would help us gain a better understanding on the real life effects of shear cycling. The test specimens consisted of a 3 × 3 array of nine solder joints of approximately 0.75 mm diameter. With the aid of specially designed test fixtures, the specimens were gripped and then subjected to mechanical cycling in the shear using an Instron Micromechanical tester. Testing was performed on both SAC305 and SACX (SAC+Bi) solder joints. The joints were cycled for certain durations, and a nanoindentation system was used to measure the evolution of the mechanical properties (elastic modulus, hardness, creep rate) as a function of the number of shear cycles.


Author(s):  
Abdullah Fahim ◽  
Sudan Ahmed ◽  
Jeffrey C. Suhling ◽  
Pradeep Lall

Exposure of lead free solder joints to high temperature isothermal aging conditions leads to microstructure evolution, which mainly includes coarsening of the intermetallic (IMC) phases. In our previous work, it was found that the coarsening of IMCs led to degradation of the overall mechanical properties of the SAC solder composite consisting of β-Sn matrix and IMC particles. However, it is not known whether the isothermal aging changes properties of the individual β-Sn and IMC phases, which could also be affecting to the overall degradation of properties. In this study, the aging induced variations of the mechanical properties of the β-Sn phase, and of Sn-Cu IMC particles in SAC solder joints have been explored using nanoindentation. SAC solder joints extracted from SuperBGA (SBGA) packages were aged for different time intervals (0, 1, 5, 10 days) at T = 125 °C. Nanoindentation test samples were prepared by cross sectioning the solder joints, and then molding them in epoxy and polishing them to prepare the joint surfaces for nanoindentation. Multiple β-Sn grains were identified in joints using optical polarized microscopy and IMCs were also observed. Individual β-Sn grains and IMC particles were then indented at room temperature to measure their mechanical properties (elastic modulus and hardness) and time dependent creep deformations. Properties measured at different aging time were then compared to explore aging induced degradations of the individual phases. The properties of the individual phases did not show significant degradation. Thus, IMC coarsening is the primary reason for the degradation of bulk solder joint properties, and changes of the properties of the individual phases making up the lead free solder material are negligible.


2010 ◽  
Vol 654-656 ◽  
pp. 2450-2454 ◽  
Author(s):  
De Kui Mu ◽  
Hideaki Tsukamoto ◽  
Han Huang ◽  
Kazuhiro Nogita

High-temperature lead-free solders are important materials for electrical and electronic devices due to increasing legislative requirements that aim at reducing the use of traditional lead-based solders. For the successful use of lead-free solders, a comprehensive understanding of the formation and mechanical properties of Intermetallic Compounds (IMCs) that form in the vicinity of the solder-substrate interface is essential. In this work, the effect of nickel addition on the formation and mechanical properties of Cu6Sn5 IMCs in Sn-Cu high-temperature lead-free solder joints was investigated using Scanning Electron Microscopy (SEM) and nanoindentation. It was found that the nickel addition increased the elastic modulus and hardness of the (Cu, Ni)6Sn5. The relationship between the nickel content and the mechanical properties of the IMCs was also established.


2013 ◽  
Vol 572 ◽  
pp. 97-106 ◽  
Author(s):  
Wislei R. Osório ◽  
Leandro C. Peixoto ◽  
Leonardo R. Garcia ◽  
Nathalie Mangelinck-Noël ◽  
Amauri Garcia

2013 ◽  
Vol 795 ◽  
pp. 446-450 ◽  
Author(s):  
Mohd Arif Anuar Mohd Salleh ◽  
Flora Somidin ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
N.Z. Noriman ◽  
Ramani Mayappan ◽  
...  

Varying amount of recycled-Aluminum (0, 3.0, 3.5 and 4.0 wt.% re-Al) particulates produced from aluminium beverage cans were successfully reincorporated into Sn-0.7Cu base matrix solder material via powder metallurgy technique. This paper focuses on the mechanical properties aspect of the new solder when joint on Cu-substrate. The hardness of the composite solders sintered bulks was enhanced with the increasing re-Al additions. Moreover, the composite solders have shown enhancement of shear stress strength at the solder joints. Fracture surface of the failure samples were analyzed using scanning electron microscope (SEM) which have indicated all samples failed under ductile fracture mechanism. However, with the refining dimples formation shown on the fractograph, this report suggests the increasing re-Al reinforcement has optimized the solder joints ductility strength.


Sign in / Sign up

Export Citation Format

Share Document