Effect of aluminum addition on the densification behavior and mechanical properties of synthesized high-purity nano-laminated Ti3SiC2 through spark plasma sintering

2018 ◽  
Vol 730 ◽  
pp. 408-416 ◽  
Author(s):  
Alireza Pourebrahim ◽  
Hamidreza Baharvandi ◽  
Hamze Foratirad ◽  
Naser Ehsani
Materials ◽  
2015 ◽  
Vol 8 (9) ◽  
pp. 6043-6061 ◽  
Author(s):  
Xialu Wei ◽  
Christina Back ◽  
Oleg Izhvanov ◽  
Oleg Khasanov ◽  
Christopher Haines ◽  
...  

2012 ◽  
Vol 538-541 ◽  
pp. 1101-1105
Author(s):  
Quan Zhen Jiang ◽  
Yun Kai Li ◽  
Chuan Sun ◽  
Yun Fei Wang ◽  
Ming Ming Wan ◽  
...  

The effect of the Al2O3 additive on the densification behavior, microstructure and mechanical properties of the B4C–xwt%Al2O3 composites sintered by means of spark plasma sintering (SPS) process were investigated. It was found that addition of Al2O3 improve the sinterability of B4C at temperatures between 1700 and 1800°C remarkably. The composite samples which with an addition of 4 wt% Al2O3 and sintering at 1750°C exhibits excellent mechanical properties (relative density: 98.82%, hardness: 90.6 HRA).


2011 ◽  
Vol 49 (01) ◽  
pp. 40-45 ◽  
Author(s):  
Hyun-Kuk Park ◽  
Seung-Min Lee ◽  
Hee-Jun Youn ◽  
Ki-Sang Bang ◽  
Ik-Hyun Oh

2020 ◽  
Vol 9 (6) ◽  
pp. 759-768
Author(s):  
Yunhui Niu ◽  
Shuai Fu ◽  
Kuibao Zhang ◽  
Bo Dai ◽  
Haibin Zhang ◽  
...  

AbstractThe synthesis, microstructure, and properties of high purity dense bulk Mo2TiAlC2 ceramics were studied. High purity Mo2TiAlC2 powder was synthesized at 1873 K starting from Mo, Ti, Al, and graphite powders with a molar ratio of 2:1:1.25:2. The synthesis mechanism of Mo2TiAlC2 was explored by analyzing the compositions of samples sintered at different temperatures. It was found that the Mo2TiAlC2 phase was formed from the reaction among Mo3Al2C, Mo2C, TiC, and C. Dense Mo2TiAlC2 bulk sample was prepared by spark plasma sintering (SPS) at 1673 K under a pressure of 40 MPa. The relative density of the dense sample was 98.3%. The mean grain size was 3.5 μm in length and 1.5 μm in width. The typical layered structure could be clearly observed. The electrical conductivity of Mo2TiAlC2 ceramic measured at the temperature range of 2–300 K decreased from 0.95 × 106 to 0.77 × 106 Ω–1·m–1. Thermal conductivity measured at the temperature range of 300–1273 K decreased from 8.0 to 6.4 W·(m·K)–1. The thermal expansion coefficient (TEC) of Mo2TiAlC2 measured at the temperature of 350–1100 K was calculated as 9.0 × 10–6 K–1. Additionally, the layered structure and fine grain size benefited for excellent mechanical properties of low intrinsic Vickers hardness of 5.2 GPa, high flexural strength of 407.9 MPa, high fracture toughness of 6.5 MPa·m1/2, and high compressive strength of 1079 MPa. Even at the indentation load of 300 N, the residual flexural strength could hold 84% of the value of undamaged one, indicating remarkable damage tolerance. Furthermore, it was confirmed that Mo2TiAlC2 ceramic had a good oxidation resistance below 1200 K in the air.


2021 ◽  
Vol 63 (9) ◽  
pp. 1583-1589
Author(s):  
D. A. Osipov ◽  
I. V. Smirnov ◽  
K. V. Grinyaev ◽  
I. A. Ditenberg ◽  
M. A. Korchagin

Sign in / Sign up

Export Citation Format

Share Document