A novel approach to prepare high-purity Si and Si/TiSi2 materials simultaneously using Ti-bearing blast furnace slag

2019 ◽  
Vol 798 ◽  
pp. 333-341 ◽  
Author(s):  
Yun Lei ◽  
Chao Wang ◽  
Wenhui Ma ◽  
Jijun Wu ◽  
Kuixian Wei ◽  
...  
2010 ◽  
Vol 27 (6) ◽  
pp. 1901-1905 ◽  
Author(s):  
Sun-Jae Kim ◽  
Seong-Gyu Seo ◽  
Sang-Chul Jung

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5198
Author(s):  
Khaled Ibrahim Azarroug Ehwailat ◽  
Mohd Ashraf Mohamad Ismail ◽  
Ali Muftah Abdussalam Ezreig

Gypseous soil is one type of expansive soil that contains a sufficient amount of sulphate. Cement and lime are the most common methods of stabilizing expansive soil, but the problem is that lime-treated gypseous soil normally fails in terms of durability due to the formation of ettringite, a highly deleterious compound. Moisture ingress causes a significant swelling of ettringite crystals, thereby causing considerable damage to structures and pavements. This study investigated the suitability of various materials (nano–Mg oxide (M), metakaolin (MK), and ground granulated blast-furnace slag (GGBS)) for the stabilization of gypseous soil. The results showed soil samples treated with 20% M-MK, M-GGBS, and M-GGBS-MK to exhibit lower swelling rates (<0.01% change in volume) compared to those treated with 10% and 20% of lime after 90 days of curing. However, soil samples stabilized with 10% and 20% binder of [(M-MK), (M-GGBS), and (M-GGBS-MK)] exhibited higher strengths after 90 days of soaking (ranging from 0.96–12.8 MPa) compared to those stabilized with 10% and 20% lime. From the morphology studies, the SEM and EDX analysis evidenced no formation of ettringite in the samples stabilized with M-MK-, M-GGBS-, and M-GGBS-MK. These results demonstrate the suitability of M-MK, M-GGBS, and M-GGBS-MK as effective agents for the stabilization of gypseous soil.


CONCREEP 10 ◽  
2015 ◽  
Author(s):  
Tomiyuki Kaneko ◽  
Keiichi Imamoto ◽  
Chizuru Kiyohara ◽  
Akio Tanaka ◽  
Ayuko Ishikawa

2017 ◽  
Vol 32 (4) ◽  
pp. 446-454
Author(s):  
A. Mostafa ◽  
G. Pacher ◽  
T. Lucyshyn ◽  
C. Holzer ◽  
E. Krischey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document