eutectic si
Recently Published Documents


TOTAL DOCUMENTS

230
(FIVE YEARS 72)

H-INDEX

19
(FIVE YEARS 6)

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 142
Author(s):  
Minghao Guo ◽  
Ming Sun ◽  
Junhui Huang ◽  
Song Pang

Fabrication condition greatly influences the microstructures and properties of Al alloys. However, most of the available reports focus on a single fabrication technique, indicating there is still a lack of systematic comparisons among wider ranges of fabrication methods. In this paper, with conventional casting (via sand/Fe/Cu mold) and additive manufacturing (AM, via selective laser melting, SLM) methods, the effects of cooling rate (Ṫ) on the microstructures and mechanical properties of hypoeutectic Al-10Si-0.5Mg alloy are systematically investigated. The results show that with increasing cooling rate from sand-mold condition to SLM condition, the grain size (d) is continuously refined from ~3522 ± 668 μm to ~10 μm, and the grain morphology is gradually refined from coarse dendrites to a mixed grain structure composed of columnar plus fine grains (~10 μm). The eutectic Si particles are effectively refined from blocky shape under sand/Fe-mold conditions to needle-like under Cu-mold conditions, and finally to fine fibrous network under SLM condition. The tensile yield strength and elongation is greatly improved from 125 ± 5 MPa (sand-mold) to 262 ± 3 MPa (SLM) and from 0.8 ± 0.2% (sand-mold) to 4.0 ± 0.2% (SLM), respectively. The strengthening mechanism is discussed, which is mainly ascribed to the continuous refinement of grains and Si particles and an increase in super-saturation of Al matrix with increasing cooling rate.


2022 ◽  
Vol 327 ◽  
pp. 207-222
Author(s):  
Jiehua Li ◽  
Xun Zhang ◽  
Johannes Winklhofer ◽  
Stefan Griesebner ◽  
Bernd Oberdorfer ◽  
...  

In order to reduce CO2 emission and energy consumption, more recycled secondary materials have to be used in foundry industry, especially for Al-Si-Mg based alloys for semi-solid processing. In this paper, Al-Si-Mg based alloys with the addition of recycled secondary materials up to 30 % (10, 20, 30 %, respectively) have been produced by semi-solid processing. The solidification microstructure was investigated using optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Furthermore, computed tomography (CT) was also used to elucidate the size, size distribution, number density, volume fraction of porosities. It was found that with the addition of the recycled secondary materials up to 30 %, there is no significant effect on the solidification microstructure in terms of the grain size and the shape factor of primary α-Al and the second α-Al. More importantly, the morphology of eutectic Si can be well modified and that of the Fe-containing phase (π-AlSiMgFe) can be tailored. Furthermore, with increasing recycled secondary materials, at least another two important issues should also be highlighted. Firstly, more TiB2 particles were observed, which can be due to the addition of Al-Ti-B grain refiners for the grain refinement of recycled secondary materials. Secondly, a significant interaction between Sr and P was also observed in the recycled secondary materials. The present investigation clearly demonstrates that Al-Si-Mg based alloys with the addition of recycled secondary materials at least up to 30% can be used for semi-solid processing, which may facilitate better sustainability.


Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 71
Author(s):  
Ho-Jung Kang ◽  
Jin-Young Park ◽  
Yoon-Suk Choi ◽  
Dae-Hyun Cho

Heat treatment is widely used to improve the properties of Al–Si–Mg alloys and its outcomes are influenced by the parameters applied during the treatment. This study describes the effect of the solution and artificial aging treatments on the microstructure and mechanical properties of die-cast Al–Si–Mg alloys. The microstructure of the as-cast Al–Si–Mg alloy was mainly composed of α-Al, complex needle-type eutectic Si particles, Mg2Si, and α-AlFeMn. The complex needle-type eutectic Si particles disintegrated into spheroidal morphologies, while the Mg2Si was dissolved due to the solid solution treatment. The maximum yield strength (YS) and ultimate tensile strength (UTS) values were 126.06 and 245.90 MPa at 520 °C after 90 min of solution heat treatment, respectively. Although the YS and UTS values of the Al–Si–Mg alloys reduced due to the solution treatment, the elongation (EL) of the solid solution heat-treated Al–Si–Mg alloys was improved in comparison to that of the as-cast Al–Si–Mg alloy. The maximum YS and UTS of 239.50 and 290.93 MPa were obtained after performing artificial aging at 180 °C for 180 min, respectively. However, the EL of the aging heat-treated alloy was reduced by a minimal value.


Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 18
Author(s):  
Seongbin An ◽  
Minsuk Kim ◽  
Chaeeul Huh ◽  
Chungseok Kim

This study aims to develop the mechanical properties of the Al6Si2Cu aluminum alloy through the double-solution treatment. In addition to the Al matrix, large amounts of coarse eutectic Si, Al2Cu intermetallic, and Fe-rich phases were generated through thermo-calc simulation in agreement with the equilibrium phases. The eutectic Si phase is fragmented and spheroidized by the solution treatment as the heat treatment temperature and time increase. The Al2Cu intermetallic phase is dissolved into the Al matrix, resulting in an increase in both strength and elongation. The second-step solution temperature at 525 °C should be an optimum condition for enhancing the mechanical properties of the Al6Si2Cu aluminum alloy.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1974
Author(s):  
Jianjun Gao ◽  
Wei Gu ◽  
Fenfei Zhang ◽  
Haibin Geng ◽  
Jianhua Zhong ◽  
...  

In order to fabricate fibrous eutectic Si, the selective etching of industrial Al–Si eutectic alloys directionally solidified at different growth rates and modified by different amounts of Sr was studied. Flake eutectic and fibrous Si were obtained by selective etching of non-modified, Sr-modified or directionally solidified Al–Si eutectic alloys. The optimal amount of Sr for fabricating branching eutectic Si was 0.04–0.07%. Through directional solidification with a high enough growth rate (more than 200 μm/s), lamellar eutectic Si transforms to fibrous eutectic Si for use in non-modified Al–Si eutectic alloys. The potentiodynamic polarization and cyclic voltammetry methods were used to test the corrosion behavior of non-modified and Sr-modified Al–Si eutectic alloys. With a constant potential of 0.5 V in HCl solution, non-modified Al–Si eutectic alloys displayed initial pitting corrosion and subsequent spalling corrosion, and 0.04% Sr-modified samples displayed uniform pitting corrosion. Compared with non-modified Al–Si eutectic alloys, Sr-modified samples displayed better corrosion resistance with lower current density and shallower pit depth during the same etching conditions.


2021 ◽  
pp. 131206
Author(s):  
Lili Zhang ◽  
Zong-wei Ji ◽  
Jiuzhou Zhao ◽  
Jie He ◽  
Hongxiang Jiang

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6537
Author(s):  
Jianfei Hao ◽  
Baoyi Yu ◽  
Jiancong Bian ◽  
Bin Chen ◽  
Huishu Wu ◽  
...  

In order to investigate the effect of Mg2Si formation on the microstructure and properties of an Al−Si alloy, the critical point of a hypereutectic Al−17Si−4Cu−Mg alloy was calculated by Pandat software. The calculation results of the equilibrium phase diagram show that the critical point for Mg2Si phase formation for the alloy was obtained when the Mg content was 2.2%. The contents of 0.5 wt.% Mg and 2.5 wt.% Mg were selected as the research object. The content of Mg increased from 0.5 wt.% to 2.5 wt.%, the eutectic Si in the matrix was reduced, and the Chinese character-like Mg2Si phase appeared in the microstructure. In the peak ageing state, in addition to θ” and Q’ phases that were mainly precipitated, there was also needle-like β” precipitation in the 2.5 wt.% Mg content alloy. Larger precipitates were found in 2.5 wt.% content alloys, mainly due to the promotion of the solid solution having the aggregation and segregation of more solute elements in the matrix. The tensile strength, elongation, and hardness of hypereutectic Al−17Si−4Cu−0.5Mg alloy under peak ageing were 331 MPa, 3.11%, and 152.1 HB, respectively. The tensile strength and the elongation decreased while the hardness increased with the 2.5 wt.% Mg content, which is due to the formation of hard and brittle Mg2Si and Al8FeMg3Si, which has a splitting effect on the matrix.


Sign in / Sign up

Export Citation Format

Share Document