P-061: Evaluation of a multi-parameter biomarker set for oxidative damage in Alzheimer's disease: DNA/RNA, lipid, and protein oxidation products

2007 ◽  
Vol 3 (3S_Part_1) ◽  
pp. S118-S118
Author(s):  
Yali Su ◽  
Czarina Cortez ◽  
Rui Tan ◽  
Chris Heward
Neuroscience ◽  
2001 ◽  
Vol 103 (2) ◽  
pp. 373-383 ◽  
Author(s):  
M.Y. Aksenov ◽  
M.V. Aksenova ◽  
D.A. Butterfield ◽  
J.W. Geddes ◽  
W.R. Markesbery

2002 ◽  
Vol 61 (2) ◽  
pp. 191-202 ◽  
Author(s):  
Michael Grundman ◽  
Patrick Delaney

Oxidative damage is present within the brains of patients with Alzheimer's disease (AD), and is observed within every class of biomolecule, including nucleic acids, proteins, lipids and carbohydrates. Oxidative injury may develop secondary to excessive oxidative stress resulting from β-amyloid-induced free radicals, mitochondrial abnormalities, inadequate energy supply, inflammation or altered antioxidant defences. Treatment with antioxidants is a promising approach for slowing disease progression to the extent that oxidative damage may be responsible for the cognitive and functional decline observed in AD. Although not a uniformly consistent observation, a number of epidemiological studies have found a link between antioxidant intake and a reduced incidence of dementia, AD and cognitive decline in elderly populations. In AD clinical trials molecules with antioxidant properties such as vitamin E andGinkgo bilobaextract have shown modest benefit. A clinical trial with vitamin E is currently ongoing to determine if it can delay progression to AD in individuals with mild cognitive impairment. Combinations of antioxidants might be of even greater potential benefit for AD, especially if the agents worked in different cellular compartments or had complementary activity (e.g. vitamins E, C and ubiquinone). Naturally-occurring compounds with antioxidant capacity are available and widely marketed (e.g. vitamin C, ubiquinone, lipoic acid, β-carotene, creatine, melatonin, curcumin) and synthetic compounds are under development by industry. Nevertheless, the clinical value of these agents for AD prevention and treatment is ambiguous, and will remain so until properly designed human trials have been performed.


2014 ◽  
Vol 4 (4) ◽  
pp. 232-238 ◽  
Author(s):  
Selvaraju Subash ◽  
Musthafa Mohamed Essa ◽  
Abdullah Al-Asmi ◽  
Samir Al-Adawi ◽  
Ragini Vaishnav ◽  
...  

2000 ◽  
Vol 28 (5) ◽  
pp. 831-834 ◽  
Author(s):  
George Perry ◽  
Arun K Raina ◽  
Akihiko Nunomura ◽  
Takafumi Wataya ◽  
Lawrence M Sayre ◽  
...  

2015 ◽  
Vol 45 (2) ◽  
pp. 639-650 ◽  
Author(s):  
Cheng Zhang ◽  
Ching-Chang Kuo ◽  
Setareh H. Moghadam ◽  
Louise Monte ◽  
Kenner C. Rice ◽  
...  

2020 ◽  
Vol 11 (5) ◽  
pp. 4707-4718 ◽  
Author(s):  
Yu Wu ◽  
Yu-gang Shi ◽  
Xiao-liang Zheng ◽  
Ya-li Dang ◽  
Chen-min Zhu ◽  
...  

Ferulic acid (FA) has been shown to have a neuroprotective effect on Alzheimer's disease induced by amyloid-beta (Aβ) neurotoxicity.


Antioxidants ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 70 ◽  
Author(s):  
Cuauhtémoc Sandoval-Salazar ◽  
Cecilia Oviedo-Solís ◽  
Edmundo Lozoya-Gloria ◽  
Herlinda Aguilar-Zavala ◽  
Martha Solís-Ortiz ◽  
...  

It has been proposed that there is a correlation between high-fat diet (HFD), oxidative stress and decreased γ-aminobutyric acid (GABA) levels, but this has not been thoroughly demonstrated. In the present study, we determined the effects of strawberry extract intake on the oxidative stress and GABA levels in the frontal cortex (FC) of obese rats. We observed that an HFD increased lipid and protein oxidation, and decreased GABA levels. Moreover, UV-irradiated strawberry extract (UViSE) decreased lipid peroxidation but not protein oxidation, whereas non-irradiated strawberry extract (NSE) reduced protein oxidation but not lipid peroxidation. Interestingly, NSE increased GABA concentration, whereas UViSE was not as effective. In conclusion, our results suggest that an HFD increases oxidative damage in the FC, whereas strawberry extract intake may ameliorate the disturbances associated with HFD-induced oxidative damage.


Sign in / Sign up

Export Citation Format

Share Document