O4-03-03: Biochemical characterization of FTLD-TDP overexpression and knockout mouse models

2009 ◽  
Vol 5 (4S_Part_5) ◽  
pp. P154-P154
Author(s):  
Hans Wils ◽  
Gernot Kleinberger ◽  
Geert Joris ◽  
Ivy Cuijt ◽  
Christine Van Broeckhoven ◽  
...  
2017 ◽  
Vol 95 (2) ◽  
pp. 304-309 ◽  
Author(s):  
Pradip K. Biswas ◽  
Edward J. Behrman ◽  
Venkat Gopalan

Salmonella can utilize fructose-asparagine (F-Asn), a naturally occurring Amadori product, as its sole carbon and nitrogen source. Conversion of F-Asn to the common intermediates glucose-6-phosphate, aspartate, and ammonia was predicted to involve the sequential action of an asparaginase, a kinase, and a deglycase. Mutants lacking the deglycase are highly attenuated in mouse models of intestinal inflammation owing to the toxic build-up of the deglycase substrate. The limited distribution of this metabolic pathway in the animal gut microbiome raises the prospects for antibacterial discovery. We report the biochemical characterization of the kinase that was expected to transform fructose-aspartate to 6-phosphofructose-aspartate during F-Asn utilization. In addition to confirming its anticipated function, we determined through studies of fructose-aspartate analogues that this kinase exhibits a substrate-specificity with greater tolerance to changes to the amino acid (including the d-isomer of aspartate) than to the sugar.


2021 ◽  
Author(s):  
Megan N. Michalski ◽  
Cassandra R. Diegel ◽  
Zhendong A. Zhong ◽  
Kelly Suino-Powell ◽  
Levi Blazer ◽  
...  

AbstractIt is currently accepted that Wnt receptors, Frizzleds (Fzd), have high functional redundancy, making individual receptors challenging to target therapeutically. Specifically, Fzd2 is believed to be functionally redundant with Fzd1 and Fzd7, findings which were based largely on previously published global knockout mouse studies. Conversely, a Fzd2 global knockout mouse model developed by the International Mouse Phenotype Consortium (IMPC) is early embryonic lethal, suggesting Fzd2 is critical for early embryonic development. If global deletion of Fzd2 leads to early lethality, floxed models are necessary to identify tissue-specific phenotypes. We found that a previously published Fzd2 flox model does not fully delete Fzd2 function. To reconcile the contradictory findings in Fzd2 mouse models and allow for tissue-specific studies of Fzd2, we have generated a new flox model using a modified two-cell homologous recombination CRISPR approach. We demonstrated successful simultaneous insertion of two loxP sites fully surrounding the Fzd2 gene and confirmed cre-mediated recombination deletes the sequence between the loxP sites leading to a Fzd2 null allele. Preliminary studies suggest global knockouts are early embryonic lethal and full characterization of the tissue-specific effects of Fzd2 deletion is currently underway. This work suggests Fzd2 uniquely regulates development and emphasizes the importance of thorough validation of newly generated mouse models.


Author(s):  
J. H. Resau ◽  
N. Howell ◽  
S. H. Chang

Spinach grown in Texas developed “yellow spotting” on the peripheral portions of the leaves. The exact cause of the discoloration could not be determined as there was no evidence of viral or parasitic infestation of the plants and biochemical characterization of the plants did not indicate any significant differences between the yellow and green leaf portions of the spinach. The present study was undertaken using electron microscopy (EM) to determine if a micro-nutrient deficiency was the cause for the discoloration.Green leaf spinach was collected from the field and sent by express mail to the EM laboratory. The yellow and equivalent green portions of the leaves were isolated and dried in a Denton evaporator at 10-5 Torr for 24 hrs. The leaf specimens were then examined using a JEOL 100 CX analytical microscope. TEM specimens were prepared according to the methods of Trump et al.


2014 ◽  
Vol 3 (3) ◽  
pp. 218-225
Author(s):  
R. G. Somkuwar ◽  
M. A. Bhange ◽  
A. K. Upadhyay ◽  
S. D. Ramteke

SauvignonBlanc wine grape was characterized for their various morphological, physiological and biochemical parameters grafted on different rootstocks. Significant differences were recorded for all the parameters studied. The studies on vegetative parameters revealed that the rootstock influences the vegetative growth thereby increasing the photosynthetic activities of a vine. The highest photosynthesis rate was recorded in 140-Ru grafted vine followed by Fercal whereas the lowest in Salt Creek rootstock grafted vines.The rootstock influenced the changes in biochemical constituents in the grafted vine thereby helping the plant to store enough food material. Significant differences were recorded for total carbohydrates, proteins, total phenols and reducing sugar. The vines grafted on1103-Pshowed highest carbohydrates and starch followed by 140-Ru,while the least amount of carbohydrates were recorded in 110-R and Salt Creek grafted vines respectively.Among the different rootstock graft combinations, Fercal showed highest amount of reducing sugar, proteins and phenols, followed by 1103-P and SO4, however, the lowest amount of reducing sugar, proteins and phenols were recorded with 110-R grafted vines.The vines grafted on different rootstocks showed changes in nutrient uptake. Considering this, the physico-biochemical characterization of grafted vine may help to identify particularrootstocks combination that could influence a desired trait in commercial wine grape varieties after grafting.


Sign in / Sign up

Export Citation Format

Share Document