IC-P-144: PRINCIPAL AXES OF PHENOTYPIC VARIABILITY IN ALZHEIMER'S DISEASE DERIVED FROM AN FDG-PET BASED, UNSUPERVISED MACHINE LEARNING ALGORITHM

2006 ◽  
Vol 14 (7S_Part_2) ◽  
pp. P122-P123
Author(s):  
David T. Jones ◽  
Val J. Lowe ◽  
Jonathan Graff-Radford ◽  
Hugo Botha ◽  
Melissa E. Murray ◽  
...  
2019 ◽  
Author(s):  
Massimiliano Grassi ◽  
Nadine Rouleaux ◽  
Daniela Caldirola ◽  
David Loewenstein ◽  
Koen Schruers ◽  
...  

ABSTRACTBackgroundDespite the increasing availability in brain health related data, clinically translatable methods to predict the conversion from Mild Cognitive Impairment (MCI) to Alzheimer’s disease (AD) are still lacking. Although MCI typically precedes AD, only a fraction of 20-40% of MCI individuals will progress to dementia within 3 years following the initial diagnosis. As currently available and emerging therapies likely have the greatest impact when provided at the earliest disease stage, the prompt identification of subjects at high risk for conversion to full AD is of great importance in the fight against this disease. In this work, we propose a highly predictive machine learning algorithm, based only on non-invasively and easily in-the-clinic collectable predictors, to identify MCI subjects at risk for conversion to full AD.MethodsThe algorithm was developed using the open dataset from the Alzheimer’s Disease Neuroimaging Initiative (ADNI), employing a sample of 550 MCI subjects whose diagnostic follow-up is available for at least 3 years after the baseline assessment. A restricted set of information regarding sociodemographic and clinical characteristics, neuropsychological test scores was used as predictors and several different supervised machine learning algorithms were developed and ensembled in final algorithm. A site-independent stratified train/test split protocol was used to provide an estimate of the generalized performance of the algorithm.ResultsThe final algorithm demonstrated an AUROC of 0.88, sensitivity of 77.7%, and a specificity of 79.9% on excluded test data. The specificity of the algorithm was 40.2% for 100% sensitivity.DiscussionThe algorithm we developed achieved sound and high prognostic performance to predict AD conversion using easily clinically derived information that makes the algorithm easy to be translated into practice. This indicates beneficial application to improve recruitment in clinical trials and to more selectively prescribe new and newly emerging early interventions to high AD risk patients.


2018 ◽  
Vol 31 (07) ◽  
pp. 937-945 ◽  
Author(s):  
Massimiliano Grassi ◽  
David A. Loewenstein ◽  
Daniela Caldirola ◽  
Koen Schruers ◽  
Ranjan Duara ◽  
...  

ABSTRACTBackground:In a previous study, we developed a highly performant and clinically-translatable machine learning algorithm for a prediction of three-year conversion to Alzheimer’s disease (AD) in subjects with Mild Cognitive Impairment (MCI) and Pre-mild Cognitive Impairment. Further tests are necessary to demonstrate its accuracy when applied to subjects not used in the original training process. In this study, we aimed to provide preliminary evidence of this via a transfer learning approach.Methods:We initially employed the same baseline information (i.e. clinical and neuropsychological test scores, cardiovascular risk indexes, and a visual rating scale for brain atrophy) and the same machine learning technique (support vector machine with radial-basis function kernel) used in our previous study to retrain the algorithm to discriminate between participants with AD (n = 75) and normal cognition (n = 197). Then, the algorithm was applied to perform the original task of predicting the three-year conversion to AD in the sample of 61 MCI subjects that we used in the previous study.Results:Even after the retraining, the algorithm demonstrated a significant predictive performance in the MCI sample (AUC = 0.821, 95% CI bootstrap = 0.705–0.912, best balanced accuracy = 0.779, sensitivity = 0.852, specificity = 0.706).Conclusions:These results provide a first indirect evidence that our original algorithm can also perform relevant generalized predictions when applied to new MCI individuals. This motivates future efforts to bring the algorithm to sufficient levels of optimization and trustworthiness that will allow its application in both clinical and research settings.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ajay Kumar Maddirala ◽  
Kalyana C Veluvolu

AbstractIn recent years, the usage of portable electroencephalogram (EEG) devices are becoming popular for both clinical and non-clinical applications. In order to provide more comfort to the subject and measure the EEG signals for several hours, these devices usually consists of fewer EEG channels or even with a single EEG channel. However, electrooculogram (EOG) signal, also known as eye-blink artifact, produced by involuntary movement of eyelids, always contaminate the EEG signals. Very few techniques are available to remove these artifacts from single channel EEG and most of these techniques modify the uncontaminated regions of the EEG signal. In this paper, we developed a new framework that combines unsupervised machine learning algorithm (k-means) and singular spectrum analysis (SSA) technique to remove eye blink artifact without modifying actual EEG signal. The novelty of the work lies in the extraction of the eye-blink artifact based on the time-domain features of the EEG signal and the unsupervised machine learning algorithm. The extracted eye-blink artifact is further processed by the SSA method and finally subtracted from the contaminated single channel EEG signal to obtain the corrected EEG signal. Results with synthetic and real EEG signals demonstrate the superiority of the proposed method over the existing methods. Moreover, the frequency based measures [the power spectrum ratio ($$\Gamma $$ Γ ) and the mean absolute error (MAE)] also show that the proposed method does not modify the uncontaminated regions of the EEG signal while removing the eye-blink artifact.


Sign in / Sign up

Export Citation Format

Share Document