Sparse blind deconvolution based low-frequency seismic data reconstruction for multiscale full waveform inversion

2017 ◽  
Vol 139 ◽  
pp. 91-108 ◽  
Author(s):  
Pan Zhang ◽  
Liguo Han ◽  
Zhuo Xu ◽  
Fengjiao Zhang ◽  
Yajie Wei
2019 ◽  
Vol 16 (6) ◽  
pp. 1017-1031 ◽  
Author(s):  
Yong Hu ◽  
Liguo Han ◽  
Rushan Wu ◽  
Yongzhong Xu

Abstract Full Waveform Inversion (FWI) is based on the least squares algorithm to minimize the difference between the synthetic and observed data, which is a promising technique for high-resolution velocity inversion. However, the FWI method is characterized by strong model dependence, because the ultra-low-frequency components in the field seismic data are usually not available. In this work, to reduce the model dependence of the FWI method, we introduce a Weighted Local Correlation-phase based FWI method (WLCFWI), which emphasizes the correlation phase between the synthetic and observed data in the time-frequency domain. The local correlation-phase misfit function combines the advantages of phase and normalized correlation function, and has an enormous potential for reducing the model dependence and improving FWI results. Besides, in the correlation-phase misfit function, the amplitude information is treated as a weighting factor, which emphasizes the phase similarity between synthetic and observed data. Numerical examples and the analysis of the misfit function show that the WLCFWI method has a strong ability to reduce model dependence, even if the seismic data are devoid of low-frequency components and contain strong Gaussian noise.


2014 ◽  
Vol 1 (2) ◽  
pp. 1757-1802
Author(s):  
C. Huang ◽  
L. Dong ◽  
Y. Liu ◽  
B. Chi

Abstract. Low frequency is a key issue to reduce the nonlinearity of elastic full waveform inversion. Hence, the lack of low frequency in recorded seismic data is one of the most challenging problems in elastic full waveform inversion. Theoretical derivations and numerical analysis are presented in this paper to show that envelope operator can retrieve strong low frequency modulation signal demodulated in multicomponent data, no matter what the frequency bands of the data is. With the benefit of such low frequency information, we use elastic envelope of multicomponent data to construct the objective function and present an elastic envelope inversion method to recover the long-wavelength components of the subsurface model, especially for the S-wave velocity model. Numerical tests using synthetic data for the Marmousi-II model prove the effectiveness of the proposed elastic envelope inversion method, especially when low frequency is missing in multicomponent data and when initial model is far from the true model. The elastic envelope can reduce the nonlinearity of inversion and can provide an excellent starting model.


2017 ◽  
Vol 5 (4) ◽  
pp. SR23-SR33 ◽  
Author(s):  
Xin Cheng ◽  
Kun Jiao ◽  
Dong Sun ◽  
Zhen Xu ◽  
Denes Vigh ◽  
...  

Over the past decade, acoustic full-waveform inversion (FWI) has become one of the standard methods in the industry to construct high-resolution velocity fields from the seismic data acquired. While most of the successful applications are for marine acquisition data with rich low-frequency diving or postcritical waves at large offsets, the application of acoustic FWI on land data remains a challenging topic. Land acoustic FWI application faces many severe difficulties, such as the presence of strong elastic effects, large near-surface velocity contrast, and heterogeneous, topography variations, etc. In addition, it is well-known that low-frequency transmitted seismic energy is crucial for the success of FWI to overcome sensitivity to starting velocity fields; unfortunately, those are the parts of the data that suffer the most from a low signal-to-noise ratio (S/N) in land acquisition. We have developed an acoustic FWI application on a land data set from North Kuwait, and demonstrated our solutions to mitigate some of the challenges posed by land data. More specifically, we have developed a semblance-based high-resolution Radon (HR-Radon) inversion approach to enhance the S/N of the low-frequency part of the FWI input data and to ultimately improve the convergence of the land FWI workflow. To mitigate the impact of elastic effects, we included only the diving and postcritical early arrivals in the waveform inversion. Our results show that, with the aid of HR-Radon preconditioning and a carefully designed workflow, acoustic FWI has the ability to derive a reliable high-resolution near-surface model that could not be otherwise recovered through traditional tomographic methods.


2019 ◽  
Vol 220 (1) ◽  
pp. 235-247
Author(s):  
Guoxin Chen ◽  
Shengchang Chen ◽  
Wencai Yang

SUMMARY Salt structures are high potential targets for oil and gas exploration. However, large-scale salt domes with irregular surfaces pose significant challenges for velocity model building. For full waveform inversion, in the absence of a high-fidelity initial model, the success of the inversion depends on low-frequency seismic data, which are scarce in the exploration data sets. This paper presents a new idea to solve the problem of salt structure velocity modelling. First, we propose an envelope-based full-band seismic data reconstruction algorithm. The smoothness of envelope is used to segment the events in seismic data, and the phase independence of envelope is used for the identification of the seismic event's arrival-time to obtain the apparent reflection sequences of the subsurface. Full-band seismic data are obtained by convolving the apparent reflection sequence with full-band source. Window averaging function and threshold strategy are used to ensure the accuracy of seismic event segmentation and the stability of the algorithm when dealing with noisy data. Then the multiscale reflection waveform inversion based on reconstructed data is proposed for salt structure velocity building. The numerical experiment results of the Sigbee2A model demonstrate the performance of the inversion algorithm in the case where the seismic data lack low-frequency components and contain noise. The limitations of the algorithm have also been analysed and studied.


Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. A37-A43
Author(s):  
Jinwei Fang ◽  
Hui Zhou ◽  
Yunyue Elita Li ◽  
Qingchen Zhang ◽  
Lingqian Wang ◽  
...  

The lack of low-frequency signals in seismic data makes the full-waveform inversion (FWI) procedure easily fall into local minima leading to unreliable results. To reconstruct the missing low-frequency signals more accurately and effectively, we have developed a data-driven low-frequency recovery method based on deep learning from high-frequency signals. In our method, we develop the idea of using a basic data patch of seismic data to build a local data-driven mapping in low-frequency recovery. Energy balancing and data patches are used to prepare high- and low-frequency data for training a convolutional neural network (CNN) to establish the relationship between the high- and low-frequency data pairs. The trained CNN then can be used to predict low-frequency data from high-frequency data. Our CNN was trained on the Marmousi model and tested on the overthrust model, as well as field data. The synthetic experimental results reveal that the predicted low-frequency data match the true low-frequency data very well in the time and frequency domains, and the field results show the successfully extended low-frequency spectra. Furthermore, two FWI tests using the predicted data demonstrate that our approach can reliably recover the low-frequency data.


Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 4
Author(s):  
Fengjiao Zhang ◽  
Pan Zhang ◽  
Zhuo Xu ◽  
Xiangbo Gong ◽  
Liguo Han

The seismic exploration method could explore deep metal ore bodies (depth > 1000 m). However, it is difficult to describe the geometry of the complex metal ore body accurately. Seismic full waveform inversion is a relatively new method to achieve accurate imaging of subsurface structures, but its success requires better initial models and low-frequency data. The seismic data acquired in the metal mine area is usually difficult to meet the requirements of full waveform inversion. The passive seismic data usually contains good low frequency information. In this paper, we use both passive and active seismic datasets to improve the full waveform inversion results in the metal mining area. The results show that the multisource seismic full waveform inversion could obtain a suitable result for high-resolution seismic imaging of metal ore bodies.


Sign in / Sign up

Export Citation Format

Share Document