Plant Communities in Harsh and Favorable Environments: Characteristics of Their Organization, Their Dominant Structure and Its Relationship to Species Richness

2020 ◽  
Vol 10 (3) ◽  
pp. 215-229
Author(s):  
V. V. Akatov ◽  
T. V. Akatova ◽  
S. G. Chefranov
Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 552
Author(s):  
Janez Kermavnar ◽  
Lado Kutnar ◽  
Aleksander Marinšek

Forest herb-layer vegetation responds sensitively to environmental conditions. This paper compares drivers of both taxonomic, i.e., species richness, cover and evenness, and functional herb-layer diversity, i.e., the diversity of clonal, bud bank and leaf-height-seed plant traits. We investigated the dependence of herb-layer diversity on ecological determinants related to soil properties, climatic parameters, forest stand characteristics, and topographic and abiotic and biotic factors associated with forest floor structure. The study was conducted in different forest types in Slovenia, using vegetation and environmental data from 50 monitoring plots (400 m2 each) belonging to the ICP Forests Level I and II network. The main objective was to first identify significant ecological predictors and then quantify their relative importance. Species richness was strongly determined by forest stand characteristics, such as richness of the shrub layer, tree layer shade-casting ability as a proxy for light availability and tree species composition. It showed a clear positive relation to soil pH. Variation in herb-layer cover was also best explained by forest stand characteristics and, to a lesser extent, by structural factors such as moss cover. Species evenness was associated with tree species composition, shrub layer cover and soil pH. Various ecological determinants were decisive for the diversity of below-ground traits, i.e., clonal and bud bank traits. For these two trait groups we observed a substantial climatic signal that was completely absent for taxonomy-based measures of diversity. In contrast, above-ground leaf-height-seed (LHS) traits were driven exclusively by soil reaction and nitrogen availability. In synthesis, local stand characteristics and soil properties acted as the main controlling factors for both species and trait diversity in herb-layer communities across Slovenia, confirming many previous studies. Our findings suggest that the taxonomic and functional facets of herb-layer vegetation are mainly influenced by a similar set of ecological determinants. However, their relative importance varies among individual taxonomy- and functional trait-based diversity measures. Integrating multi-faceted approaches can provide complementary information on patterns of herb-layer diversity in European forest plant communities.


2021 ◽  
Author(s):  
Jiang Wang ◽  
Yuan Ge ◽  
J. Hans C. Cornelissen ◽  
Xiaoyan Wang ◽  
Song Gao ◽  
...  

Abstract Biodiversity loss, exotic plant invasions and climatic change are currently the three major challenges to our globe and can each affect various ecological processes, including litter composition. To gain a better understanding of global change impacts on ecological processes, these three global change components need to be considered simultaneously. Here we assembled experimental plant communities with species richness levels (1, 2, 4, 8 or 16) and subjected them to drought (no, moderate or intensive drought) and invasion (invasion by the exotic annual plant Symphyotrichum subulatum or not). We collected litter of the native plant communities and let it decompose for nine months within the communities. Drought decreased litter decomposition, while the exotic plant invasion had no impact. Increasing species richness decreased litter decomposition under the mesic condition (no drought), but had little impact under moderate and intensive drought. A structural equation model showed that drought and species richness affected litter decomposition mainly via influencing litter nitrogen concentration, but not via altering the quantity and diversity of soil meso-fauna or soil physio-chemical properties. The negative impact of species diversity on litter decomposition under the mesic condition was mainly ascribed to a sampling effect, i.e. via particularly low litter nitrogen concentrations in the two dominant species. Our results indicate that species richness can interact with drought to affect litter decomposition via effect on litter nitrogen. We conclude that nitrogen-dependent litter decomposition should be a mechanism to predict integrated effects of plant diversity loss, exotic plant invasions and climatic change on litter decomposition.


2019 ◽  
Vol 12 (1) ◽  
pp. 204 ◽  
Author(s):  
Yang Cao ◽  
Yosihiro Natuhara

Riparian areas are local hot spots of biodiversity that are vulnerable and easily degraded. Comparing plant communities in habitats with different degrees of urbanization may provide valuable information for the management and restoration of these vulnerable habitats. In this study, we explored the impact of urbanization on vegetation communities between artificial and semi-natural habitats within two rivers with different levels of development. We compared species richness, types of vegetation, and composition patterns of the plants in our study. In artificial habitats, the sites with relatively high levels of urbanization had the highest species richness, while in semi-natural habitats, the highest species richness was recorded in the less urbanized sites. Furthermore, every component of urbanization that contributed to the variation of species richness was examined in the current study. In artificial habitats, the proportion of impervious surface was the strongest predictor of the variation in species richness and was associated with the richness of alien, native, and riparian species. In semi-natural habitats, most of the richness of alien and native species were associated with the distance to the city center, and the number of riparian and ruderal species was significantly related to the proportion of impervious surface. Moreover, we found that a high level of urbanization was always associated with a large abundance of alien and ruderal species in both artificial and in semi-natural habitats. We recommend the methods of pair comparison of multiple rivers to analyze the impact of urbanization on plant species in riparian areas and have suggested various management actions for maintaining biodiversity and sustainability in riparian ecosystems.


1989 ◽  
Vol 37 (4) ◽  
pp. 337 ◽  
Author(s):  
RL Specht ◽  
A Specht

The species richness (number of vascular-plant species per unit area) of sclerophyll (heathy) plant communities is examined from south-east Queensland to south-west Western Australia. The species richness of communities of heathy open forest, heathy open scrub, dry heathland and wet heathland is consist- ently similar throughout southern Australia and decreases from dry heathland (on laterite, coastal and inland localities) to heathy open forest, heathy open scrub and wet heathland. Investigation of related microcommunities at Cooloola, Stradbroke Island, Ku-ring-gai Chase and Wilsons Promontory indicates that species richness decreases linearly as overstorey cover increases. In post-fire succession on Stradbroke Island heathy woodland and Dark Island heathland, species richness declines linearly as overstorey cover increases during the regeneration of the community. The appli- cation of limiting fertiliser to Stradbroke Island heathy woodland and Dark Island heathland increases the rate of development of overstorey cover, with a simultaneous decrease in species richness. Species richness of the understorey strata of plant communities appears to be inversely related to the rate of development of foliage projective cover in the overstorey. If an environmental or biotic factor inhibits or retards the development of overstorey cover, the understorey increases in species richness. Conversely, if any environmental or biotic factor accelerates the development of overstorey cover, the understorey species show a reduction in species richness.


2018 ◽  
Vol 48 (4) ◽  
pp. 399-411 ◽  
Author(s):  
Praveen Kumar ◽  
Han Y.H. Chen ◽  
Sean C. Thomas ◽  
Chander Shahi

Although the importance of coarse woody debris (CWD) to understory species diversity has been recognized, the combined effects of CWD decay and substrate species on abundance and species diversity of epixylic vegetation have received little attention. We sampled a wide range of CWD substrate species and decay classes, as well as forest floors in fire-origin boreal forest stands. Percent cover, species richness, and evenness of epixylic vegetation differed significantly with both CWD decay class and substrate species. Trends in cover, species richness, and evenness differed significantly between nonvascular and vascular taxa. Cover, species richness, and species evenness of nonvascular species were higher on CWD, whereas those of vascular plants were higher on the forest floor. Epixylic species composition also varied significantly with stand ages, overstory compositions, decay classes, substrate species, and their interactions. Our findings highlight strong interactive influences of decay class and substrate species on epixylic plant communities and suggest that conservation of epixylic diversity would require forest managers to maintain a diverse range of CWD decay classes and substrate species. Because stand development and overstory compositions influence CWD decay classes and substrate species, as well as colonization time and environmental conditions in the understory, our results indicate that managed boreal landscapes should consist of a mosaic of different successional stages and a broad suite of overstory types to support diverse understory plant communities.


Koedoe ◽  
1997 ◽  
Vol 40 (1) ◽  
Author(s):  
H.C. Eckhardt ◽  
N. Van Rooyen ◽  
G.J. Bredenkamp

An analysis of the woody vegetation of northern KwaZulu-Natal is presented. Releves were compiled in 102 stratified random sample plots. A TWINSPAN classification, refined by Braun-Blanquet procedures, revealed 24 plant communities, also referred to as vegetation units. For each of these vegetation units, the species richness was determined. Four associations were identified which have a conservation importance. An ordination (DECORANA), based on floristic data, revealed the position of the syntaxa on environmental gradients.


Sign in / Sign up

Export Citation Format

Share Document