Effect of solvents extraction on phytochemical profile and biological activities of two Ocimum species: A comparative study

Author(s):  
Shweta Sharma ◽  
Amita Kumari ◽  
Jyoti Dhatwalia ◽  
Ishita Guleria ◽  
Sohan Lal ◽  
...  
Biomolecules ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 127
Author(s):  
Milka Mileva ◽  
Yana Ilieva ◽  
Gabriele Jovtchev ◽  
Svetla Gateva ◽  
Maya Margaritova Zaharieva ◽  
...  

Plants from the Rosacea family are rich in natural molecules with beneficial biological properties, and they are widely appreciated and used in the food industry, perfumery, and cosmetics. In this review, we are considering Rosa damascena Mill., Rosa alba L., Rosa centifolia L., and Rosa gallica L. as raw materials important for producing commercial products, analyzing and comparing the main biological activities of their essential oils, hydrolates, and extracts. A literature search was performed to find materials describing (i) botanical characteristics; (ii) the phytochemical profile; and (iii) biological properties of the essential oil sand extracts of these so called “old roses” that are cultivated in Bulgaria, Turkey, India, and the Middle East. The information used is from databases PubMed, Science Direct, and Google Scholar. Roses have beneficial healing properties due to their richness of beneficial components, the secondary metabolites as flavonoids (e.g., flavones, flavonols, anthocyanins), fragrant components (essential oils, e.g., monoterpenes, sesquiterpenes), and hydrolysable and condensed tannins. Rose essential oils and extracts with their therapeutic properties—as respiratory antiseptics, anti-inflammatories, mucolytics, expectorants, decongestants, and antioxidants—are able to act as symptomatic prophylactics and drugs, and in this way alleviate dramatic sufferings during severe diseases.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 299 ◽  
Author(s):  
Manoj Kumar ◽  
Vivek Saurabh ◽  
Maharishi Tomar ◽  
Muzaffar Hasan ◽  
Sushil Changan ◽  
...  

Mangifera indica L. belongs to the family of Anacardiaceae and is an important fruit from South and Southeast Asia. India, China, Thailand, Indonesia, Pakistan, Mexico, Brazil, Bangladesh, Nigeria, and the Philippines are among the top mango producer countries. Leaves of the mango plant have been studied for their health benefits, which are attributed to a plethora of phytochemicals such as mangiferin, followed by phenolic acids, benzophenones, and other antioxidants such as flavonoids, ascorbic acid, carotenoids, and tocopherols. The extracts from mango leaves (MLs) have been studied for their biological activities, including anti-cancer, anti-diabetic, anti-oxidant, anti-microbial, anti-obesity, lipid-lowering, hepato-protection, and anti-diarrheal. In the present review, we have elaborated on the nutritional and phytochemical profile of the MLs. Further, various bioactivities of the ML extracts are also critically discussed. Considering the phytochemical profile and beneficial effects of the MLs, they can be used as a potential ingredient for the development of functional foods and pharmaceutical drugs. However, more detailed clinical trials still needed to be conducted for establishing the actual efficacy of the ML extracts.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 614
Author(s):  
Manoj Kumar ◽  
Sushil Changan ◽  
Maharishi Tomar ◽  
Uma Prajapati ◽  
Vivek Saurabh ◽  
...  

Annona squamosa L. (custard apple) belongs to the family Annonaceae and is an important tropical fruit cultivated in the West Indies, South and Central America, Ecuador, Peru, Brazil, India, Mexico, the Bahamas, Bermuda, and Egypt. Leaves of custard apple plants have been studied for their health benefits, which are attributed to a considerable diversity of phytochemicals. These compounds include phenol-based compounds, e.g., proanthocyanidins, comprising 18 different phenolic compounds, mainly alkaloids and flavonoids. Extracts from Annona squamosa leaves (ASLs) have been studied for their biological activities, including anticancer, antidiabetic, antioxidant, antimicrobial, antiobesity, lipid-lowering, and hepatoprotective functions. In the current article, we discussed the nutritional and phytochemical diversity of ASLs. Additionally, ASL extracts were discussed with respect to their biological activities, which were established by in vivo and in vitro experiments. A survey of the literature based on the phytochemical profile and health-promoting effects of ASLs showed that they can be used as potential ingredients for the development of pharmaceutical drugs and functional foods. Although there are sufficient findings available from in vitro and in vivo investigations, clinical trials are still needed to determine the exact effects of ASL extracts on human health.


2017 ◽  
Vol 27 (6) ◽  
pp. 702-710 ◽  
Author(s):  
Marlon H. de Araujo ◽  
Isabel C.V. da Silva ◽  
Pollyana F. de Oliveira ◽  
Arielly R.R. Barreto ◽  
Tatiana U.P. Konno ◽  
...  

2019 ◽  
pp. 1-5 ◽  
Author(s):  
Davlat Kh. Akramov ◽  
Gokhan Zengin ◽  
Sun Chul Kang ◽  
Komiljon Sh. Tojibaev ◽  
Mohamad Fawzi Mahomoodally ◽  
...  

Plants ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 265 ◽  
Author(s):  
Immacolata Faraone ◽  
Dilip K. Rai ◽  
Daniela Russo ◽  
Lucia Chiummiento ◽  
Eloy Fernandez ◽  
...  

Oxidative stress is involved in different diseases, such as diabetes and neurodegenerative diseases. The genus Azorella includes about 70 species of flowering plant species; most of them are commonly used as food and in particular as a tea infusion in the Andean region of South America in folk medicine to treat various chronic diseases. Azorella glabra Wedd. aerial parts were firstly analyzed for their in vitro antioxidant activity using different complementary assays. In particular, radical scavenging activity was tested against biological neutral radical DPPH; ferric reducing power and lipid peroxidation inhibitory capacity (FRAP and Beta-Carotene Bleaching tests) were also determined. The Relative Antioxidant Capacity Index (RACI) was used to compare data obtained by different assays. Then, the inhibitory ability of samples was investigated against α-amylase and α-glucosidase enzymes involved in diabetes and against acetylcholinesterase and butyrylcholinesterase enzymes considered as strategy for the treatment of Parkinson’s or Alzheimer’s diseases. Moreover, the phytochemical profile of the sample showing the highest RACI (1.35) and interesting enzymatic activities (IC50 of 163.54 ± 9.72 and 215.29 ± 17.10 μg/mL in α-glucosidase and acetylcholinesterase inhibition, respectively) was subjected to characterization and quantification of its phenolic composition using LC-MS/MS analysis. In fact, the ethyl acetate fraction derived from ethanol extract by liquid/liquid extraction showed 29 compounds, most of them are cinnamic acid derivatives, flavonoid derivatives, and a terpene. To the best of our knowledge, this is the first report about the evaluation of significant biological activities and phytochemical profile of A. glabra, an important source of health-promoting phytochemicals.


Sign in / Sign up

Export Citation Format

Share Document