scholarly journals Gravity waves-induced airglow temperature variations, phase relationships, and Krassovsky ratio for OH(8,3) airglow, O2(0,1) atmospheric band, and O(1S) greenline in the MLT region

2015 ◽  
Vol 130-131 ◽  
pp. 68-74 ◽  
Author(s):  
Tai-Yin Huang
2018 ◽  
Vol 75 (10) ◽  
pp. 3635-3651 ◽  
Author(s):  
Ryosuke Yasui ◽  
Kaoru Sato ◽  
Yasunobu Miyoshi

The contributions of gravity waves to the momentum budget in the mesosphere and lower thermosphere (MLT) is examined using simulation data from the Ground-to-Topside Model of Atmosphere and Ionosphere for Aeronomy (GAIA) whole-atmosphere model. Regardless of the relatively coarse model resolution, gravity waves appear in the MLT region. The resolved gravity waves largely contribute to the MLT momentum budget. A pair of positive and negative Eliassen–Palm flux divergences of the resolved gravity waves are observed in the summer MLT region, suggesting that the resolved gravity waves are likely in situ generated in the MLT region. In the summer MLT region, the mean zonal winds have a strong vertical shear that is likely formed by parameterized gravity wave forcing. The Richardson number sometimes becomes less than a quarter in the strong-shear region, suggesting that the resolved gravity waves are generated by shear instability. In addition, shear instability occurs in the low (middle) latitudes of the summer (winter) MLT region and is associated with diurnal (semidiurnal) migrating tides. Resolved gravity waves are also radiated from these regions. In Part I of this paper, it was shown that Rossby waves in the MLT region are also radiated by the barotropic and/or baroclinic instability formed by parameterized gravity wave forcing. These results strongly suggest that the forcing by gravity waves originating from the lower atmosphere causes the barotropic/baroclinic and shear instabilities in the mesosphere that, respectively, generate Rossby and gravity waves and suggest that the in situ generation and dissipation of these waves play important roles in the momentum budget of the MLT region.


2019 ◽  
Author(s):  
Boris Strelnikov ◽  
Martin Eberhart ◽  
Martin Friedrich ◽  
Jonas Hedin ◽  
Mikhail Khaplanov ◽  
...  

Abstract. In this paper we present an overview of measurements conducted during the WADIS-2 rocket campaign. We investigate the effect of small-scale processes like gravity waves and turbulence on the distribution of atomic oxygen and other species in the MLT region. Our analysis suggests that density fluctuations of atomic oxygen are coupled to fluctuations of other constituents, i.e., plasma and neutrals. Our measurements show that all measured quantities, including winds, densities, and temperatures, reveal signatures of both waves and turbulence. We show observations of gravity wave saturation and breakdown together with simultaneous measurements of generated turbulence. Atomic oxygen inside turbulence layers shows two different spectral behaviors, which might imply change of its diffusion properties.


2001 ◽  
Vol 27 (10) ◽  
pp. 1737-1742 ◽  
Author(s):  
T. Nakamura ◽  
T. Tsuda ◽  
R. Maekawa ◽  
M. Tsutsumi ◽  
K. Shiokawa ◽  
...  

2021 ◽  
Vol 7 (4) ◽  
pp. 79-84
Author(s):  
Maksim Tolstikov ◽  
Konstantin Ratovsky ◽  
Irina Medvedeva ◽  
Denis Khabituev

We present the results of a comprehensive study of the manifestation of wave activity with periods of internal gravity waves (IGW) in various regions of the atmosphere: in the stratosphere, upper mesosphere, and in the F2-region of the ionosphere. The study is based on radiophysical and spectrometric measurements made with tools of the Institute of Solar-Terrestrial Physics (ISTP) SB RAS and the Era-Interim reanalysis data. The correlation coefficient with time shift between ionospheric and stratospheric activity for the annual interval varies in the range from 0.45 to 0.54, and for the 27-day interval it reaches the levels 0.4–0.8 in seventy percent of the cases. Thirty percent of correlation coefficients less than 0.4 can be explained by the influence of neutral wind, geomagnetic activity, and non-stratospheric IGW sources. Comparison between stratospheric activity and variations in characteristics of traveling ionospheric disturbances (TID) has shown that a ~15 day shift in stratospheric activity results in a fairly high correlation between stratospheric activity and disturbance of IGW characteristics (~0.6). The delay of about 15 days can be attributed to the delay in the temperature variations at heights of the lower thermosphere relative to the temperature variations at the altitude pressure level of 1 hPa. Comparative analysis of variations in mesospheric and ionospheric activity has revealed time intervals when their behavior is consistent.


2020 ◽  
Vol 13 (11) ◽  
pp. 6067-6093
Author(s):  
Sabine Wüst ◽  
Michael Bittner ◽  
Jeng-Hwa Yee ◽  
Martin G. Mlynczak ◽  
James M. Russell III

Abstract. Airglow spectrometers, as they are operated within the Network for the Detection of Mesospheric Change (NDMC; https://ndmc.dlr.de, last access: 1 November 2020), for example, allow the derivation of rotational temperatures which are equivalent to the kinetic temperature, local thermodynamic equilibrium provided. Temperature variations at the height of the airglow layer are, amongst others, caused by gravity waves. However, airglow spectrometers do not deliver vertically resolved temperature information. This is an obstacle for the calculation of the density of gravity wave potential energy from these measurements. As Wüst et al. (2016) showed, the density of wave potential energy can be estimated from data of OH∗-airglow spectrometers if co-located TIMED-SABER (Thermosphere Ionosphere Mesosphere Energetics Dynamics, Sounding of the Atmosphere using Broadband Emission Radiometry) measurements are available, since they allow the calculation of the Brunt–Väisälä frequency. If co-located measurements are not available, a climatology of the Brunt–Väisälä frequency is an alternative. Based on 17 years of TIMED-SABER temperature data (2002–2018), such a climatology is provided here for the OH∗-airglow layer height and for a latitudinal longitudinal grid of 10∘×20∘ at midlatitudes and low latitudes. Additionally, climatologies of height and thickness of the OH∗-airglow layer are calculated.


Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1116
Author(s):  
Olga P. Borchevkina ◽  
Sergey O. Adamson ◽  
Yurii A. Dyakov ◽  
Ivan V. Karpov ◽  
Gennady V. Golubkov ◽  
...  

Determination of the physical mechanisms of the energy transfer of tropospheric disturbances to the ionosphere is one of the fundamental problems of atmospheric physics. This article presents the observational results of tropospheric and ionospheric disturbances during the passages of the solar terminator and solar eclipse. Lidar observations showed the occurrence of tropospheric regions with noticeably increased amplitudes of density, pressure, and temperature variations with periods corresponding to acoustic and internal gravity waves, which were generated in the troposphere during the development of these events. Simultaneous satellite measurements demonstrate the response of the ionosphere to these tropospheric disturbances. Based on the experimental data, we determine the typical periods and spatial scales of variations. It is shown that the response time of the ionosphere to tropospheric disturbances is 30–40 min.


1985 ◽  
Vol 63 (5) ◽  
pp. 592-599 ◽  
Author(s):  
A. Molina ◽  
M. Lopez-Puertas ◽  
J. J. Lopez-Moreno ◽  
R. Rodrigo

Simultaneous data from five atmospheric emissions (OH (6–2), NaD, O2(1Σ), OI–557.7 nm, and the visible continuum) have been used to obtain values of the parameters related to gravity waves. Expressions devoted to obtaining values for the proportionality factors between intensity oscillations of each emission and the induced atmospheric density variations are proposed. The linear theory has been used to obtain results about induced velocities, temperature variations, and the kinetic energy density. The different heights of emission layers allow us to analyze the vertical propagation of the gravity waves. The estimated induced velocities are compared with those derived by using the amplitude increase factor from the linear theory. This comparison shows the behaviour of the amplitude following the linear theory for altitudes below 88–90 km and a deviation from the exponential growth for altitudes above 90 km owing to dissipative effects.


2021 ◽  
Vol 7 (4) ◽  
pp. 84-90
Author(s):  
Maksim Tolstikov ◽  
Konstantin Ratovsky ◽  
Irina Medvedeva ◽  
Denis Khabituev

We present the results of a comprehensive study of the manifestation of wave activity with periods of internal gravity waves (IGW) in various regions of the atmosphere: in the stratosphere, upper mesosphere, and in the F2-region of the ionosphere. The study is based on radiophysical and spectrometric measurements made with tools of the Institute of Solar-Terrestrial Physics (ISTP) SB RAS and the Era-Interim reanalysis data. The correlation coefficient with time shift between ionospheric and stratospheric activity for the annual interval varies in the range from 0.45 to 0.54, and for the 27-day interval it reaches the levels 0.4–0.8 in seventy percent of the cases. Thirty percent of correlation coefficients less than 0.4 can be explained by the influence of neutral wind, geomagnetic activity, and non-stratospheric IGW sources. Comparison between stratospheric activity and variations in characteristics of traveling ionospheric disturbances (TID) has shown that a ~15 day shift in stratospheric activity results in a fairly high correlation between stratospheric activity and disturbance of IGW characteristics (~0.6). The delay of about 15 days can be attributed to the delay in the temperature variations at heights of the lower thermosphere relative to the temperature variations at the altitude pressure level of 1 hPa. Comparative analysis of variations in mesospheric and ionospheric activity has revealed time intervals when their behavior is consistent.


2018 ◽  
Vol 173 ◽  
pp. 119-127 ◽  
Author(s):  
Carsten Schmidt ◽  
Tim Dunker ◽  
Sabrina Lichtenstern ◽  
Jürgen Scheer ◽  
Sabine Wüst ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document