Validation of SARAL/AltiKa significant wave height and wind speed observations over the North Indian Ocean

2015 ◽  
Vol 135 ◽  
pp. 174-180 ◽  
Author(s):  
U. Mahesh Kumar ◽  
D. Swain ◽  
S.K. Sasamal ◽  
N. Narendra Reddy ◽  
T. Ramanjappa
Author(s):  
Aljoscha Sander ◽  
Andreas F. Haselsteiner ◽  
Kader Barat ◽  
Michael Janssen ◽  
Stephan Oelker ◽  
...  

Abstract During single blade installation in offshore wind farms, relative motion between nacelle and blade root due to wind and wave excitation pose a significant challenge. Wave excitation can be modelled considerably well by employing state-of-the-art simulation tools and can, therefore, be included in installation planning. Other phenomena, such as flow-induced vibrations are hard to capture and hence challenging to account for when defining installation procedures and limitations. Here, we present measurements conducted during the installation of an offshore wind farm consisting of multi-megawatt turbines installed on monopile foundations in the North Sea. A custom-built sensor capturing linear & angular acceleration and GPS-data was deployed atop the nacelle. Both partially and fully assembled turbines displayed complex oscillation orbits, swiftly changing amplitude and direction. Mean nacelle deflection correlated strongly with significant wave height as well as mean wind speed. As wind speed and significant wave height showed a strong correlation as well, it is difficult to discern which load drives the observed relative motions. While wind loads are significantly smaller than wave loads on partially assembled turbines under installation conditions, additional momentum induced by vortex shedding may prove sufficient to cause the observed effects.


2015 ◽  
Vol 44 (2) ◽  
pp. 225-231 ◽  
Author(s):  
Chiranjivi Jayaram ◽  
Saurabh Bansal ◽  
A. Sai Krishnaveni ◽  
Neethu Chacko ◽  
V. M. Chowdary ◽  
...  

2018 ◽  
Vol 68 (6) ◽  
pp. 689-699 ◽  
Author(s):  
Chen Fu ◽  
Dongxiao Wang ◽  
Lei Yang ◽  
Yao Luo ◽  
Fenghua Zhou ◽  
...  

Author(s):  
Catarina S. Soares ◽  
C. Guedes Soares

This paper presents the results of a comparison of the fit of three bivariate models to a set of 14 years of significant wave height and peak wave period data from the North Sea. One of the methods defines the joint distribution from a marginal distribution of significant wave height and a set of distributions of peak period conditional on significant wave height. Other method applies the Plackett model to the data and the third one applies the Box-Cox transformation to the data in order to make it approximately normal and then fits a bivariate normal distribution to the transformed data set. It is shown that all methods provide a good fit but each one have its own strengths and weaknesses, being the choice dependent on the data available and applications in mind.


Author(s):  
Wengang Mao ◽  
Jonas W. Ringsberg ◽  
Igor Rychlik ◽  
Gaute Storhaug

This paper presents results from an ongoing research project which aims at developing a numerical tool for route planning of container ships. The objective with the tool is to be able to schedule a route that causes minimum fatigue damage to a vessel before it leaves port. Therefore a new simple fatigue estimation model, only using encountered significant wave height, is proposed for predicting fatigue accumulation of a vessel during a voyage. The formulation of the model is developed based on narrow-band approximation. The significant response height hs, is shown to have a linear relationship with its encountered significant wave height Hs. The zero up-crossing response frequency fz, is represented as the corresponding encountered wave frequency and is expressed as a function of Hs. The capacity and accuracy of the model is illustrated by application on one container vessel’s fatigue damage accumulation, for different voyages, operating in the North Atlantic during 2008. For this vessel, all the necessary data needed in the fatigue model, and for verification of it, was obtained by measurements. The results from the proposed fatigue model are compared with the well-known and accurate rain-flow estimation. The conclusion is that the estimations made using the current fatigue model agree well with the rain-flow method for almost all of the voyages.


2006 ◽  
Vol 19 (21) ◽  
pp. 5667-5685 ◽  
Author(s):  
Sergey K. Gulev ◽  
Vika Grigorieva

Abstract This paper analyses secular changes and interannual variability in the wind wave, swell, and significant wave height (SWH) characteristics over the North Atlantic and North Pacific on the basis of wind wave climatology derived from the visual wave observations of voluntary observing ship (VOS) officers. These data are available from the International Comprehensive Ocean–Atmosphere Data Set (ICOADS) collection of surface meteorological observations for 1958–2002, but require much more complicated preprocessing than standard meteorological variables such as sea level pressure, temperature, and wind. Visual VOS data allow for separate analysis of changes in wind sea and swell, as well as in significant wave height, which has been derived from wind sea and swell estimates. In both North Atlantic and North Pacific midlatitudes winter significant wave height shows a secular increase from 10 to 40 cm decade−1 during the last 45 yr. However, in the North Atlantic the patterns of trend changes for wind sea and swell are quite different from each other, showing opposite signs of changes in the northeast Atlantic. Trend patterns of wind sea, swell, and SWH in the North Pacific are more consistent with each other. Qualitatively the same conclusions hold for the analysis of interannual variability whose leading modes demonstrate noticeable differences for wind sea and swell. Statistical analysis shows that variability in wind sea is closely associated with the local wind speed, while swell changes can be driven by the variations in the cyclone counts, implying the importance of forcing frequency for the resulting changes in significant wave height. This mechanism of differences in variability patterns of wind sea and swell is likely more realistic than the northeastward propagation of swells from the regions from which the wind sea signal originates.


Sign in / Sign up

Export Citation Format

Share Document