The impact of cold electrons and cold ions in magnetospheric physics

Author(s):  
Gian Luca Delzanno ◽  
Joseph E. Borovsky ◽  
Michael G. Henderson ◽  
Pedro Alberto Resendiz Lira ◽  
Vadim Roytershteyn ◽  
...  

2020 ◽  
Author(s):  
Peter Stephenson ◽  
Marina Galand ◽  
Jan Deca ◽  
Pierre Henri ◽  
Gianluca Carnielli

<p>The plasma instruments, Mutual Impedance Probe (MIP) and Langmuir Probe (LAP), part of the Rosetta Plasma Consortium (RPC), onboard the Rosetta mission to comet 67P revealed a population of cold electrons (<1eV) (Engelhardt et al., 2018; Wattieaux et al, 2020; Gilet et al., 2020). This population is primarily generated by cooling warm (~10eV) newly-born cometary electrons through collisions with the neutral coma. What is surprising is that the cold electrons were detected throughout the escort phase, even at very low outgassing rates (Q<1e26 s<sup>-1</sup>) at large heliocentric distances (>3 AU), when the coma was not thought to be dense enough to cool the electron population significantly.</p> <p> Using a collisional test particle model, we examine the behaviour of electrons in the coma of a weakly outgassing comet and the formation of a cold population through electron-neutral collisions. The model incorporates three electron sources: the solar wind, photo-electrons produced through ionisation of the cometary neutrals by extreme ultraviolet solar radiation, and secondary electrons produced through electron-impact ionisation.</p> <p>The model includes different electron-water collision processes, including elastic, excitation, and ionisation collisions.</p> <p> The electron trajectories are shaped by electric and magnetic fields, which are taken from a 3D collisionless fully-kinetic Particle-in-Cell (PIC) model of the solar wind and cometary plasma  (Deca 2017, 2019). We use a spherically symmetric coma of pure water, which gives a r<sup>-2</sup> profile in the neutral density. Throughout their lifetime, electrons undergo stochastic collisions with neutral molecules, which can degrade the electrons in energy or scatter them.</p> <p>We first validate our model with comparison to results from PIC simulations. We then demonstrate the trapping of electrons in the coma by an ambipolar electric field and the impact of this trapping on the production of cold electrons.</p>



1994 ◽  
Vol 52 (1) ◽  
pp. 1-22 ◽  
Author(s):  
L. Hannibal ◽  
E. Rebhan ◽  
C. Kielhorn

For the simple model of cold electrons streaming against cold ions the complete set of nonlinear stationary waves is expressed in terms of elliptic functions. The conditions for their dynamical connection to a uniform neutral plasma state are taken into account, and the conditions for the neglect of the magnetic field are analysed. The range of existence of stationary waves is found to be confined to the stable regime of the two-stream instability, but covers only part of it. All nonlinear BGK waves that are found within the limits of the model can be shown to bifurcate from the two-stream instability, some of them also exhibiting secondary and further bifurcations. As an exceptional case, all bifurcations can be treated exactly. Close to the linear regime, all nonlinear modes turn out to be unstable. The corresponding instability is caused by a wave decay that transports energy from low to high wavenumbers of the Fourier modes constituting the wave. From the two-stream solutions four- stream solutions with exactly vanishing magnetic field are derived.



1975 ◽  
Vol 13 (3) ◽  
pp. 553-562 ◽  
Author(s):  
Shiew L. Hsieh ◽  
Howard W. Bloomberg ◽  
S. Peter Gary

The paper describes a model, in which ions are accelerated against the direction of the electric field at a density gradient. A one-dimensional, inhomogeneous, steady-state is constructed, in which cold electrons stream relative to cold ions. The wavenumber and amplitude of the fluctuating potential are calculated, then used to compute the trajectories of representative ions trapped in the potential troughs. Ion acceleration to energies an order of magnitude greater than the applied potential is demonstrated.



1962 ◽  
Vol 14 ◽  
pp. 415-418
Author(s):  
K. P. Stanyukovich ◽  
V. A. Bronshten

The phenomena accompanying the impact of large meteorites on the surface of the Moon or of the Earth can be examined on the basis of the theory of explosive phenomena if we assume that, instead of an exploding meteorite moving inside the rock, we have an explosive charge (equivalent in energy), situated at a certain distance under the surface.



1962 ◽  
Vol 14 ◽  
pp. 169-257 ◽  
Author(s):  
J. Green

The term geo-sciences has been used here to include the disciplines geology, geophysics and geochemistry. However, in order to apply geophysics and geochemistry effectively one must begin with a geological model. Therefore, the science of geology should be used as the basis for lunar exploration. From an astronomical point of view, a lunar terrain heavily impacted with meteors appears the more reasonable; although from a geological standpoint, volcanism seems the more probable mechanism. A surface liberally marked with volcanic features has been advocated by such geologists as Bülow, Dana, Suess, von Wolff, Shaler, Spurr, and Kuno. In this paper, both the impact and volcanic hypotheses are considered in the application of the geo-sciences to manned lunar exploration. However, more emphasis is placed on the volcanic, or more correctly the defluidization, hypothesis to account for lunar surface features.



1997 ◽  
Vol 161 ◽  
pp. 197-201 ◽  
Author(s):  
Duncan Steel

AbstractWhilst lithopanspermia depends upon massive impacts occurring at a speed above some limit, the intact delivery of organic chemicals or other volatiles to a planet requires the impact speed to be below some other limit such that a significant fraction of that material escapes destruction. Thus the two opposite ends of the impact speed distributions are the regions of interest in the bioastronomical context, whereas much modelling work on impacts delivers, or makes use of, only the mean speed. Here the probability distributions of impact speeds upon Mars are calculated for (i) the orbital distribution of known asteroids; and (ii) the expected distribution of near-parabolic cometary orbits. It is found that cometary impacts are far more likely to eject rocks from Mars (over 99 percent of the cometary impacts are at speeds above 20 km/sec, but at most 5 percent of the asteroidal impacts); paradoxically, the objects impacting at speeds low enough to make organic/volatile survival possible (the asteroids) are those which are depleted in such species.



1997 ◽  
Vol 161 ◽  
pp. 189-195
Author(s):  
Cesare Guaita ◽  
Roberto Crippa ◽  
Federico Manzini

AbstractA large amount of CO has been detected above many SL9/Jupiter impacts. This gas was never detected before the collision. So, in our opinion, CO was released from a parent compound during the collision. We identify this compound as POM (polyoxymethylene), a formaldehyde (HCHO) polymer that, when suddenly heated, reformes monomeric HCHO. At temperatures higher than 1200°K HCHO cannot exist in molecular form and the most probable result of its decomposition is the formation of CO. At lower temperatures, HCHO can react with NH3 and/or HCN to form high UV-absorbing polymeric material. In our opinion, this kind of material has also to be taken in to account to explain the complex evolution of some SL9 impacts that we observed in CCD images taken with a blue filter.



1997 ◽  
Vol 161 ◽  
pp. 179-187
Author(s):  
Clifford N. Matthews ◽  
Rose A. Pesce-Rodriguez ◽  
Shirley A. Liebman

AbstractHydrogen cyanide polymers – heterogeneous solids ranging in color from yellow to orange to brown to black – may be among the organic macromolecules most readily formed within the Solar System. The non-volatile black crust of comet Halley, for example, as well as the extensive orangebrown streaks in the atmosphere of Jupiter, might consist largely of such polymers synthesized from HCN formed by photolysis of methane and ammonia, the color observed depending on the concentration of HCN involved. Laboratory studies of these ubiquitous compounds point to the presence of polyamidine structures synthesized directly from hydrogen cyanide. These would be converted by water to polypeptides which can be further hydrolyzed to α-amino acids. Black polymers and multimers with conjugated ladder structures derived from HCN could also be formed and might well be the source of the many nitrogen heterocycles, adenine included, observed after pyrolysis. The dark brown color arising from the impacts of comet P/Shoemaker-Levy 9 on Jupiter might therefore be mainly caused by the presence of HCN polymers, whether originally present, deposited by the impactor or synthesized directly from HCN. Spectroscopic detection of these predicted macromolecules and their hydrolytic and pyrolytic by-products would strengthen significantly the hypothesis that cyanide polymerization is a preferred pathway for prebiotic and extraterrestrial chemistry.



Author(s):  
Lucien F. Trueb

Crushed and statically compressed Madagascar graphite that was explosively shocked at 425 kb by means of a planar flyer-plate is characterized by a black zone extending for 2 to 3 nun below the impact plane of the driver. Beyond this point, the material assumes the normal gray color of graphite. The thickness of the black zone is identical with the distance taken by the relaxation wave to overtake the compression wave.The main mechanical characteristic of the black material is its great hardness; steel scalpels and razor blades are readily blunted during attempts to cut it. An average microhardness value of 95-3 DPHN was obtained with a 10 kg load. This figure is a minimum because the indentations were usually cracked; 14.8 DPHN was measured in the gray zone.



Author(s):  
Sarah A. Luse

In the mid-nineteenth century Virchow revolutionized pathology by introduction of the concept of “cellular pathology”. Today, a century later, this term has increasing significance in health and disease. We now are in the beginning of a new era in pathology, one which might well be termed “organelle pathology” or “subcellular pathology”. The impact of lysosomal diseases on clinical medicine exemplifies this role of pathology of organelles in elucidation of disease today.Another aspect of cell organelles of prime importance is their pathologic alteration by drugs, toxins, hormones and malnutrition. The sensitivity of cell organelles to minute alterations in their environment offers an accurate evaluation of the site of action of drugs in the study of both function and toxicity. Examples of mitochondrial lesions include the effect of DDD on the adrenal cortex, riboflavin deficiency on liver cells, elevated blood ammonia on the neuron and some 8-aminoquinolines on myocardium.



Sign in / Sign up

Export Citation Format

Share Document