Key elements of auroral substorm development and their relationship to recent observations of detached sub-auroral phenomena including STEVE-like emissions

2021 ◽  
Vol 218 ◽  
pp. 105600
Author(s):  
M.G. Henderson
1998 ◽  
Vol 16 (12) ◽  
pp. 1573-1579 ◽  
Author(s):  
L. A. Hajkowicz

Abstract. Statistical study on the universal time variations in the mean hourly auroral electrojet index (AE-index) has been undertaken for a 21 y period over two solar cycles (1957–1968 and 1978–1986). The analysis, applied to isolated auroral substorm onsets (inferred from rapid variations in the AE-index) and to the bulk of the AE data, indicates that the maximum in auroral activity is largely confined to 09–18 UT, with a distinct minimum at 03–06 UT. The diurnal effect was clearly present throughout all seasons in the first cycle but was mainly limited to northern winter in the second cycle. Severe storms (AE > 1000 nT) tended to occur between 9–18 UT irrespective of the seasons whereas all larger magnetic disturbances (AE > 500 nT) tended to occur in this time interval mostly in winter. On the whole the diurnal trend was strong in winter, intermediate at equinox and weak in summer. The implication of this study is that Eastern Siberia, Japan and Australia are mostly at night, during the period of maximum auroral activity whereas Europe and Eastern America are then mostly at daytime. The minimum of auroral activity coincides with near-midnight conditions in Eastern America. It appears that the diurnal UT distribution in the AE-index reflects a diurnal change between interplanetary magnetic field orientation and the Earth's magnetic dipole inclination.Key words. Ionosphere (auroral ionosphere) · Magnetospheric physics (auroral phenomena; storms and substorms).


2002 ◽  
Vol 12 ◽  
pp. 602-605 ◽  
Author(s):  
Ashwin R. Vasavada

AbstractThe Galileo spacecraft’s Solid State Imager (SSI) has been returning mosaics of Jupiter since 1996. The combination of high spatial resolution, broad spectral range, and short mosaic time steps has revealed a dynamic, vertically extended cloud structure not detectable by Voyager. These data have stimulated new analyses of major features such as zonal jets, the Great Red Spot, White Ovals, and the Galileo Probe entry site. Near-infrared images have provided fundamental constraints on the vertical structure of clouds and hazes, including the first imaging of a water cloud. Results from night side imaging include an extensive search for lightning, the first matching of lightning events to day side storm clouds, and the first spectral and spatial measurements of visible-wavelength auroral phenomena (not discussed here, see Vasavada et al. 2000). The identification of several tall, energetic storm systems at specific latitudes has led to new ideas about the role of moist convection in Jupiter’s atmospheric energetics.


2013 ◽  
Vol 118 (7) ◽  
pp. 4080-4092 ◽  
Author(s):  
L. R. Lyons ◽  
Y. Nishimura ◽  
E. Donovan ◽  
V. Angelopoulos

Nature ◽  
1965 ◽  
Vol 205 (4975) ◽  
pp. 998-998 ◽  
Author(s):  
BRUNO COPPI

2018 ◽  
Vol 70 (1) ◽  
Author(s):  
Akimasa Ieda ◽  
Kirsti Kauristie ◽  
Yukitoshi Nishimura ◽  
Yukinaga Miyashita ◽  
Harald U. Frey ◽  
...  

Author(s):  
Charles F. Kennel

Around the time the steady convection model was being developed, Akasofu (1964) was arranging ground-based magnetometer and all-sky camera observations of the complex time dependence of nightside auroral activity into the central phenomenological conception of tune-dependent magnetospheric physics—the auroral substorm. In this chapter, we assemble a description of a substorm from modern observations. We will see that observations of electric fields, auroral X rays, cosmic noise absorption, ionospheric density, and geomagnetic micropulsations have also been successfully ordered by the substorm paradigm. At the same time, it will become clear that each individual substorm has its own irreducible individuality, and that our summary description is really a list of effects that anyone thinking about substorms ought to consider. No real substorm will look exactly like the one described here. Spacecraft observations of auroral light, precipitation, currents, and fields from polar orbit have held out high promise for unified understanding of the development of the auroral substorm around the entire oval. Without truly global auroral observations, it would be difficult to establish decisive contact with observations of large-scale convection and the associated changes in magnetospheric configuration. Despite the high promise and the many other successes of spacecraft observations of the aurora, synthetic understanding of the time development of the auroral substorm at all local times, dayside and nightside, evening and dawn, has been slow in emerging, perhaps because a stringent combination of field of view, sensitivity, space and time resolution, and multispectral capability is required. One needs images of the whole oval with sufficient space resolution to identify important arc structures (50-100 km or better) in a temporal sequence that can articulate the evolution of activity on better than the 10-minute time scale on which polar cap convection develops. Only recently has it been possible to observe auroral activity at all local tunes around the auroral oval simultaneously and follow its time development from the beginning of the growth phase until well into the expansion phase. This amplification of the original paradigm is the subject of Sections 12.2 and 12.3.


2001 ◽  
Vol 19 (6) ◽  
pp. 593-600 ◽  
Author(s):  
O. Norberg ◽  
J. D. Winningham ◽  
H. Lauche ◽  
W. Keith ◽  
W. Puccio ◽  
...  

Abstract. The miniature electron and ion spectrometer MEDUSA on Astrid-2 consists of two "top-hat"-type spherical electrostatic analyzers, sharing a common top-hat. Fast energy sweeps (16 electron sweeps and 8 ion sweeps per second) allow for very high temporal resolution measurements of a two-dimensional slice of the particle distribution function. The energy range covered, is in the case of electrons, 4 eV to 22 keV and, in the case of ions, 2 eV to 12 keV. MEDUSA is mounted with its aperture close to the spin plane of Astrid-2, which allows for good pitch-angle coverage when the local magnetic field is in the satellite spin plane. The PIA-1/2 spin-scanning ultraviolet photometers measure auroral emissions. Using the spacecraft spin and orbital motion, it is possible to create two-dimensional images from the data. Spin-scanning photometers, such as PIA, are low-cost, low mass alternatives to auroral imagers, but place constraints on the satellite attitude. Data from MEDUSA are used to study processes in the auroral region, in particular, electrodynamics of aurora and "black aurora". MEDUSA is also a technological development, paving the way for highly capable, miniaturized particle spectrometers.Key words. Ionosphere (instruments and techniques) – Magnetospheric physics (auroral phenomena; instruments and techniques)


Sign in / Sign up

Export Citation Format

Share Document