Simulation of the role of Caspian Sea surface temperature and air temperature on precipitation intensity in lake-effect snow

Author(s):  
Parvin Ghafarian ◽  
Amir H. Delju ◽  
Sahar Tajbakhsh ◽  
Mohammadreza Mohammadpour Penchah
2011 ◽  
Vol 11 (12) ◽  
pp. 6049-6062 ◽  
Author(s):  
X. Yue ◽  
H. Liao ◽  
H. J. Wang ◽  
S. L. Li ◽  
J. P. Tang

Abstract. Mineral dust aerosol can be transported over the nearby oceans and influence the energy balance at the sea surface. The role of dust-induced sea surface temperature (SST) responses in simulations of the climatic effect of dust is examined by using a general circulation model with online simulation of mineral dust and a coupled mixed-layer ocean model. Both the longwave and shortwave radiative effects of mineral dust aerosol are considered in climate simulations. The SST responses are found to be very influential on simulated dust-induced climate change, especially when climate simulations consider the two-way dust-climate coupling to account for the feedbacks. With prescribed SSTs and dust concentrations, we obtain an increase of 0.02 K in the global and annual mean surface air temperature (SAT) in response to dust radiative effects. In contrast, when SSTs are allowed to respond to radiative forcing of dust in the presence of the dust cycle-climate interactions, we obtain a global and annual mean cooling of 0.09 K in SAT by dust. The extra cooling simulated with the SST responses can be attributed to the following two factors: (1) The negative net (shortwave plus longwave) radiative forcing of dust at the surface reduces SST, which decreases latent heat fluxes and upward transport of water vapor, resulting in less warming in the atmosphere; (2) The positive feedback between SST responses and dust cycle. The dust-induced reductions in SST lead to reductions in precipitation (or wet deposition of dust) and hence increase the global burden of small dust particles. These small particles have strong scattering effects, which enhance the dust cooling at the surface and further reduce SSTs.


2008 ◽  
Vol 52 ◽  
pp. 283-288
Author(s):  
Ryoko ODA ◽  
Manabu KANDA ◽  
Ryo MORIWAKI ◽  
Tadashi YAMADA

2014 ◽  
Vol 57 (5) ◽  
Author(s):  
Nazario Tartaglione ◽  
Rodrigo Caballero

<p>This article investigates the role of sea surface temperature (SST) as well as the effects of evaporation and moisture convergence on the evolution of cyclone Klaus, which occurred on January 23 and 24, 2009. To elucidate the role of sea surface temperature (SST) and air–sea fluxes in the dynamics of the cyclone, ten hydrostatic mesoscale simulations were performed by Bologna Limited Area Model (BOLAM). The first one was a control experiment with European Centre for Medium-Range Weather Forecasts (ECMWF) SST analysis. The nine following simulations are sensitivity experiments where the SST are obtained by adding a constant value by 1 to 9 K to the ECMWF field. Results show that a warmer sea increases the surface latent heat fluxes and the moisture convergence, favoring the development of convection in the storm. Convection is affected immediately by the increased SST. Later on, drop of mean sea level pressure (MSLP) occurs together with increasing of surface winds. The cyclone trajectory is not sensitive to change in SST differently from MSLP and convective precipitation.</p>


2020 ◽  
Author(s):  
Celia A. Baumhoer ◽  
Andreas J. Dietz ◽  
Christof Kneisel ◽  
Heiko Paeth ◽  
Claudia Kuenzer

Abstract. The safety band of Antarctica consisting of floating glacier tongues and ice shelves buttresses ice discharge of the Antarctic Ice Sheet. Recent disintegration events of ice shelves and glacier retreat indicate a weakening of this important safety band. Predicting calving front retreat is a real challenge due to complex ice dynamics in a data-scarce environment being unique for each ice shelf and glacier. We explore to what extent easy to access remote sensing and modelling data can help to define environmental conditions leading to calving front retreat. For the first time, we present a circum-Antarctic record of glacier and ice shelf front retreat over the last two decades in combination with environmental variables such as air temperature, sea ice days, snowmelt, sea surface temperature and wind direction. We find that the Antarctic ice sheet area shrank 29,618 ± 29 km2 in extent between 1997–2008 and gained an area of 7,108 ± 144.4 km2 between 2009 and 2018. Retreat concentrated along the Antarctic Peninsula and West Antarctica including the biggest ice shelves Ross and Ronne. Glacier and ice shelf retreat comes along with one or several changes in environmental variables. Decreasing sea ice days, intense snow melt, weakening easterlies and relative changes in sea surface temperature were identified as enabling factors for retreat. In contrast, relative increases in air temperature did not correlate with calving front retreat. To better understand drivers of glacier and ice shelf retreat it is of high importance to analyse the magnitude of basal melt through the intrusion of warm Circumpolar Deep Water (CDW) driven by strengthening westerlies and to further assess surface hydrology processes such as meltwater ponding, runoff and lake drainage.


Baltica ◽  
2018 ◽  
Vol 30 (2) ◽  
pp. 75-85 ◽  
Author(s):  
Viktorija Rukšėnienė ◽  
Inga Dailidienė ◽  
Loreta Kelpšaitė-Rimkienė ◽  
Tarmo Soomere

This study focuses on time scales and spatial variations of interrelations between average weather conditions and sea surface temperature (SST), and long-term changes in the SST in south-eastern Baltic Sea. The analysis relies on SST samples measured in situ four times a year in up to 17 open sea monitoring stations in Lithuanian waters in 1960–2015. A joint application of non-metric multi-dimensional scaling and cluster analysis reveals four distinct SST regimes and associated sub-regions in the study area. The increase in SST has occurred during both winter and summer seasons in 1960–2015 whereas the switch from relatively warm summer to colder autumn temperatures has been shifted by 4–6 weeks over this time in all sub-regions. The annual average air temperature and SST have increased by 0.03°C yr–1 and 0.02°C yr–1, respectively, from 1960 till 2015. These data are compared with air temperatures measured in coastal meteorological stations and averaged over time intervals from 1 to 9 weeks. Statistically significant positive correlation exists between the SST and the average air temperature. This correlation is strongest for the averaging interval of 35 days.


Sign in / Sign up

Export Citation Format

Share Document