scholarly journals Immunosuppressive calcineurin inhibitor cyclosporine A induces pro-apoptotic endoplasmic reticulum stress in renal tubular cells

2022 ◽  
pp. 101589
Author(s):  
Duygu Elif Yilmaz ◽  
Karin Kirschner ◽  
Hasan Demirci ◽  
Nina Himmerkus ◽  
Sebastian Bachmann ◽  
...  
2000 ◽  
Vol 6 (S2) ◽  
pp. 604-605
Author(s):  
H. Song ◽  
C. Wei

Cyclosporine-A (CsA) is the widely used immunosuppressant drug in renal transplantation. However, the effects of cyclosporine-A are limited by a significant nephrotoxicity. The mechanisms of CsA-induced allograft nephropathy are remaining controversial. Recent study indicated that cellular apoptosis may contribute to the cyclosporine A-mediated cytotoxic action. To date, regarding the effects of cyclosporine A on renal cell apoptosis-related gene expression remain poorly defined. p53 is an important gene in control of renal cell growth and death. Transforming growth factor-beta (TGF-beta) is a multifunctional cytokine that has anti-proliferative as well as fibrogenic properties.We hypothesized that cyclosporine-A may increase p53 and TGF-β expression in renal tubular cells. These actions of cyclosporine-A may contribute to the cellular apoptosis, fibrosis and CsA-induced nephrotoxicity. Therefore, current study was designed to determine the effects of cyclosporine-A on the p53 and TGF-βl protein expression by immunohistochemical staining (IHCS) in cultured human tubular cells.


2015 ◽  
Vol 34 (11) ◽  
pp. 1096-1105
Author(s):  
H-H Cheng ◽  
C-T Chou ◽  
T-K Sun ◽  
W-Z Liang ◽  
J-S Cheng ◽  
...  

Naproxen is an anti-inflammatory drug that affects cellular calcium ion (Ca2+) homeostasis and viability in different cells. This study explored the effect of naproxen on [Ca2+]i and viability in Madin-Darby canine kidney cells (MDCK) canine renal tubular cells. At concentrations between 50 μM and 300 μM, naproxen induced [Ca2+]i rises in a concentration-dependent manner. This Ca2+ signal was reduced partly when extracellular Ca2+ was removed. The Ca2+ signal was inhibited by a Ca2+ channel blocker nifedipine but not by store-operated Ca2+ channel inhibitors (econazole and SKF96365), a protein kinase C (PKC) activator phorbol 12-myristate 13-acetate, and a PKC inhibitor GF109203X. In Ca2+-free medium, pretreatment with 2,5-di-tert-butylhydroquinone or thapsigargin, an inhibitor of endoplasmic reticulum Ca2+ pumps, partly inhibited naproxen-induced Ca2+ signal. Inhibition of phospholipase C with U73122 did not alter naproxen-evoked [Ca2+]i rises. At concentrations between 15 μM and 30 μM, naproxen killed cells in a concentration-dependent manner, which was not reversed by prechelating cytosolic Ca2+ with the acetoxymethyl ester of 1,2-bis(2-aminophenoxy)ethane- N, N, N′, N′-tetraacetic acid acetoxymethyl. Annexin V/propidium iodide staining data suggest that naproxen induced apoptosis. Together, in MDCK renal tubular cells, naproxen induced [Ca2+]i rises by inducing Ca2+ release from multiple stores that included the endoplasmic reticulum and Ca2+ entry via nifedipine-sensitive Ca2+ channels. Naproxen induced cell death that involved apoptosis.


2008 ◽  
Vol 294 (3) ◽  
pp. F499-F507 ◽  
Author(s):  
Kirti Bhatt ◽  
Leping Feng ◽  
Navjotsingh Pabla ◽  
Kebin Liu ◽  
Sylvia Smith ◽  
...  

Bcl-2 family proteins are central regulators of apoptosis. As the prototypic member, Bcl-2 protects various types of cells against apoptotic insults. In mammalian cells, Bcl-2 has a dual subcellular localization, in mitochondria and endoplasmic reticulum (ER). The respective roles played by mitochondrial and ER-localized Bcl-2 in apoptotic inhibition are unclear. Using Bcl-2 constructs for targeted subcellular expression, we have now determined the contributions of mitochondrial and ER-localized Bcl-2 to the antiapoptotic effects of Bcl-2 in renal tubular cells. Wild-type Bcl-2, when expressed in renal proximal tubular cells, showed partial colocalizations with both cytochrome c and disulfide isomerase, indicating dual localizations of Bcl-2 in mitochondria and ER. In contrast, Bcl-2 constructs with mitochondria-targeting or ER-targeting sequences led to relatively restricted Bcl-2 expression in mitochondria and ER, respectively. Expression of wild-type and mitochondrial Bcl-2 showed significant inhibitory effects on tubular cell apoptosis that was induced by cisplatin or ATP depletion; however, ER-Bcl-2 was much less effective. During ATP depletion, cytochrome c was released from mitochondria into the cytosol. This release was suppressed by wild-type and mitochondrial Bcl-2, but not by ER-Bcl-2. Consistently, wild-type and mitochondrial Bcl-2, but not ER-Bcl-2, blocked Bax activation during ATP depletion, a critical event for mitochondrial outer membrane permeabilization and cytochrome c release. In contrast, ER-Bcl-2 protected against apoptosis during tunicamycin-induced ER stress. Collectively, the results suggest that the cytoprotective effects of Bcl-2 in different renal injury models are largely determined by its subcellular localizations.


1980 ◽  
Vol 58 (2) ◽  
pp. 207-214 ◽  
Author(s):  
T. C. Steve Wong ◽  
Sherwin S. Desser

Pathological alterations in hepatocytes and proximal renal tubular cells of the American robin (Turdus migratorius) harbouring schizonts of Leucocytozoon dubreuili consisted primarily of nuclear hypertrophy and the reduction and disruption of cytoplasmic organelles such as endoplasmic reticulum and mitochondria. Other changes included the accumulation of lipofuscin-like bodies and the reduction and disorganization of microvilli.Neither glycogen nor acid or alkaline phosphatase activities were detected in the parasite while these occurred in the parasitized cells and adjacent uninfected cells. The significance of these observations is discussed in relation to studies on other malaria-like parasites.


2012 ◽  
Vol 127 (2) ◽  
pp. 425-437 ◽  
Author(s):  
Sergio Berzal ◽  
Matilde Alique ◽  
Marta Ruiz-Ortega ◽  
Jesús Egido ◽  
Alberto Ortiz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document