Experimental flexion/extension data corridors for validation of finite element models of the young, normal cervical spine

2006 ◽  
Vol 39 (2) ◽  
pp. 375-380 ◽  
Author(s):  
John A. Wheeldon ◽  
Frank A. Pintar ◽  
Stephanie Knowles ◽  
Narayan Yoganandan
2013 ◽  
Vol 135 (6) ◽  
Author(s):  
William J. Anderst ◽  
William F. Donaldson ◽  
Joon Y. Lee ◽  
James D. Kang

The effects of degeneration and surgery on cervical spine mechanics are commonly evaluated through in vitro testing and finite element models derived from these tests. The objectives of the current study were to estimate the load applied to the C2 vertebra during in vivo functional flexion-extension and to evaluate the effects of anterior cervical arthrodesis on spine kinetics. Spine and head kinematics from 16 subjects (six arthrodesis patients and ten asymptomatic controls) were determined during functional flexion-extension using dynamic stereo X-ray and conventional reflective markers. Subject-specific inverse dynamics models, including three flexor muscles and four extensor muscles attached to the skull, estimated the force applied to C2. Total force applied to C2 was not significantly different between arthrodesis and control groups at any 10 deg increment of head flexion-extension (all p values ≥ 0.937). Forces applied to C2 were smallest in the neutral position, increased slowly with flexion, and increased rapidly with extension. Muscle moment arms changed significantly during flexion-extension, and were dependent upon the direction of head motion. The results suggest that in vitro protocols and finite element models that apply constant loads to C2 do not accurately represent in vivo cervical spine kinetics.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Zewen Shi ◽  
Lin Shi ◽  
Xianjun Chen ◽  
Jiangtao Liu ◽  
Haihao Wu ◽  
...  

Abstract Background The superior facet arthroplasty is important for intervertebral foramen microscopy. To our knowledge, there is no study about the postoperative biomechanics of adjacent L4/L5 segments after different methods of S1 superior facet arthroplasty. To evaluate the effect of S1 superior facet arthroplasty on lumbar range of motion and disc stress of adjacent segment (L4/L5) under the intervertebral foraminoplasty. Methods Eight finite element models (FEMs) of lumbosacral vertebrae (L4/S) had been established and validated. The S1 superior facet arthroplasty was simulated with different methods. Then, the models were imported into Nastran software after optimization; 500 N preload was imposed on the L4 superior endplate, and 10 N⋅m was given to simulate flexion, extension, lateral flexion and rotation. The range of motion (ROM) and intervertebral disc stress of the L4-L5 spine were recorded. Results The ROM and disc stress of L4/L5 increased with the increasing of the proportions of S1 superior facet arthroplasty. Compared with the normal model, the ROM of L4/L5 significantly increased in most directions of motion when S1 superior facet formed greater than 3/5 from the ventral to the dorsal or 2/5 from the apex to the base. The disc stress of L4/L5 significantly increased in most directions of motion when S1 superior facet formed greater than 3/5 from the ventral to the dorsal or 1/5 from the apex to the base. Conclusion In this study, the ROM and disc stress of L4/L5 were affected by the unilateral S1 superior facet arthroplasty. It is suggested that the forming range from the ventral to the dorsal should be less than 3/5 of the S1 upper facet joint. It is not recommended to form from apex to base. Level of evidence Level IV


Author(s):  
Sean M. Finley ◽  
J. Harley Astin ◽  
Evan Joyce ◽  
Andrew T. Dailey ◽  
Douglas L. Brockmeyer ◽  
...  

OBJECTIVE The underlying biomechanical differences between the pediatric and adult cervical spine are incompletely understood. Computational spine modeling can address that knowledge gap. Using a computational method known as finite element modeling, the authors describe the creation and evaluation of a complete pediatric cervical spine model. METHODS Using a thin-slice CT scan of the cervical spine from a 5-year-old boy, a 3D model was created for finite element analysis. The material properties and boundary and loading conditions were created and model analysis performed using open-source software. Because the precise material properties of the pediatric cervical spine are not known, a published parametric approach of scaling adult properties by 50%, 25%, and 10% was used. Each scaled finite element model (FEM) underwent two types of simulations for pediatric cadaver testing (axial tension and cardinal ranges of motion [ROMs]) to assess axial stiffness, ROM, and facet joint force (FJF). The authors evaluated the axial stiffness and flexion-extension ROM predicted by the model using previously published experimental measurements obtained from pediatric cadaveric tissues. RESULTS In the axial tension simulation, the model with 50% adult ligamentous and annulus material properties predicted an axial stiffness of 49 N/mm, which corresponded with previously published data from similarly aged cadavers (46.1 ± 9.6 N/mm). In the flexion-extension simulation, the same 50% model predicted an ROM that was within the range of the similarly aged cohort of cadavers. The subaxial FJFs predicted by the model in extension, lateral bending, and axial rotation were in the range of 1–4 N and, as expected, tended to increase as the ligament and disc material properties decreased. CONCLUSIONS A pediatric cervical spine FEM was created that accurately predicts axial tension and flexion-extension ROM when ligamentous and annulus material properties are reduced to 50% of published adult properties. This model shows promise for use in surgical simulation procedures and as a normal comparison for disease-specific FEMs.


2020 ◽  
Vol 113 ◽  
pp. 110077
Author(s):  
Michael R. Herron ◽  
Jeeone Park ◽  
Andrew T. Dailey ◽  
Douglas L. Brockmeyer ◽  
Benjamin J. Ellis

2021 ◽  
pp. 1-13
Author(s):  
Waseem Ur Rahman ◽  
Wei Jiang ◽  
Guohua Wang ◽  
Zhijun Li

BACKGROUND: The finite element method (FEM) is an efficient and powerful tool for studying human spine biomechanics. OBJECTIVE: In this study, a detailed asymmetric three-dimensional (3D) finite element (FE) model of the upper cervical spine was developed from the computed tomography (CT) scan data to analyze the effect of ligaments and facet joints on the stability of the upper cervical spine. METHODS: A 3D FE model was validated against data obtained from previously published works, which were performed in vitro and FE analysis of vertebrae under three types of loads, i.e. flexion/extension, axial rotation, and lateral bending. RESULTS: The results show that the range of motion of segment C1–C2 is more flexible than that of segment C2–C3. Moreover, the results from the FE model were used to compute stresses on the ligaments and facet joints of the upper cervical spine during physiological moments. CONCLUSION: The anterior longitudinal ligaments (ALL) and interspinous ligaments (ISL) are found to be the most active ligaments, and the maximum stress distribution is appear on the vertebra C3 superior facet surface under both extension and flexion moments.


2016 ◽  
Vol 138 (6) ◽  
Author(s):  
Jonas Östh ◽  
Karin Brolin ◽  
Mats Y. Svensson ◽  
Astrid Linder

Mathematical cervical spine models allow for studying of impact loading that can cause whiplash associated disorders (WAD). However, existing models only cover the male anthropometry, despite the female population being at a higher risk of sustaining WAD in automotive rear-end impacts. The aim of this study is to develop and validate a ligamentous cervical spine intended for biomechanical research on the effect of automotive impacts. A female model has the potential to aid the design of better protection systems as well as improve understanding of injury mechanisms causing WAD. A finite element (FE) mesh was created from surface data of the cervical vertebrae of a 26-year old female (stature 167 cm, weight 59 kg). Soft tissues were generated from the skeletal geometry and anatomical literature descriptions. Ligaments were modeled with nonlinear elastic orthotropic membrane elements, intervertebral disks as composites of nonlinear elastic bulk elements, and orthotropic anulus fibrosus fiber layers, while cortical and trabecular bones were modeled as isotropic plastic–elastic. The model has geometrical features representative of the female cervical spine—the largest average difference compared with published anthropometric female data was the vertebral body depth being 3.4% shorter for the model. The majority the cervical segments compare well with respect to biomechanical data at physiological loads, with the best match for flexion–extension loads and less biofidelity for axial rotation. An average female FE ligamentous cervical spine model was developed and validated with respect to physiological loading. In flexion–extension simulations with the developed female model and an existing average male cervical spine model, a greater range of motion (ROM) was found in the female model.


Author(s):  
N. Bahramshahi ◽  
H. Ghaemi ◽  
K. Behdinan

The objective of this investigation is to develop a detailed, non-linear asymmetric three-dimensional anatomically and mechanically accurate FE model of complete middle cervical spine (C3-C5) using Hypermesh and MSC.Marc software. To achieve this goal, the components of the cervical spine are modeled using 20-noded hexagonal elements. The model includes the intervertebral disc, cortical bone, cancellous bone, endplates, and ligaments. The structure and dimensions of each spinal component are compared with experimentally measured values. In addition, the soil mechanics formulation of MSC.Marc finite element software is applied to model the mechanical behaviour of vertebrae and intervertebral discs as linear isotropic two-phase (biphasic) material. The FE simulation is conducted to investigate compression, flexion\extension and right\Left lateral bending modes. The simulation results are validated and compared closely with the published experimental data and the existing FE models. In general, results show greater flexibility in flexion and less flexibility in extension. The flexion/extension curves are asymmetric with a greater magnitude in flexion than in extension. In addition, the variations of the predicted lateral C4-C5 disc bulge are investigated and the results show that the maximum disc bulge occurs at the C4-C5 anterior location.


2005 ◽  
Vol 127 (1) ◽  
pp. 186-192 ◽  
Author(s):  
Hong-Wan Ng ◽  
Ee-Chon Teo ◽  
Qinghang Zhang

Laminectomy and facetectomy are surgical techniques used for decompression of the cervical spinal stenosis. Recent in vitro and finite element studies have shown significant cervical spinal instability after performing these surgical techniques. However, the influence of degenerated cervical disk on the biomechanical responses of the cervical spine after these surgical techniques remains unknown. Therefore, a three-dimensional nonlinear finite element model of the human cervical spine (C2–C7) was created. Two types of disk degeneration grades were simulated. For each grade of disk degeneration, the intact as well as the two surgically altered models simulating C5 laminectomy with or without C5–C6 total facetectomies were exercised under flexion and extension. Intersegmental rotational motions, internal disk annulus, cancellous and cortical bone stresses were obtained and compared to the normal intact model. Results showed that the cervical rotational motion decreases with progressive disk degeneration. Decreases in the rotational motion due to disk degeneration were accompanied by higher cancellous and cortical bone stress. The surgically altered model showed significant increases in the rotational motions after laminectomies and facetectomies when compared to the intact model. However, the percentage increases in the rotational motions after various surgical techniques were reduced with progressive disk degeneration.


Author(s):  
Tao He ◽  
Jun Zhang ◽  
Tong Yu ◽  
Jiuping Wu ◽  
Tianyang Yuan ◽  
...  

Minimally invasive surgeries, including posterior endoscopic cervical foraminotomy (PECF), microsurgical anterior cervical foraminotomy (MACF), anterior transdiscal approach of endoscopic cervical discectomy (ATd-ECD), and anterior transcorporeal approach of endoscopic cervical discectomy (ATc-ECD), have obtained positive results for cervical spondylotic radiculopathy. Nonetheless, there is a lack of comparison among them regarding their biomechanical performance. The purpose of this study is to investigate the biomechanical changes of operated and adjacent segments after minimally invasive surgeries compared to a normal cervical spine. A three-dimensional model of normal cervical vertebrae C3–C7 was established using finite element analysis. Afterwards, four surgical models (PECF, MACF, ATd-ECD, and ATc-ECD) were constructed on the basis of the normal model. Identical load conditions were applied to simulate flexion, extension, lateral bending, and axial rotation of the cervical spine. We calculated the range of motion (ROM), intradiscal pressure (IDP), annulus fibrosus pressure (AFP), uncovertebral joints contact pressure (CPRESS), and facet joints CPRESS under different motions. For all circumstances, ATc-ECD was close to the normal cervical spine model, whereas ATd-ECD significantly increased ROM and joints CPRESS and decreased IDP in the operated segment. PECF increased more the operated segment ROM than did the MACF, but the MACF obtained maximum IDP and AFP. Except for ATc-ECD, the other models increased joints CPRESS of the operated segment. For adjacent segments, ROM, IDP, and joints CPRESS showed a downward trend in all models. All models showed good biomechanical stability. With their combination biomechanics, safety, and conditions of application, PECF and ATc-ECD could be appropriate choices for cervical spondylotic radiculopathy.


Sign in / Sign up

Export Citation Format

Share Document