scholarly journals The biomechanical effect on the adjacent L4/L5 segment of S1 superior facet arthroplasty: a finite element analysis for the male spine

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Zewen Shi ◽  
Lin Shi ◽  
Xianjun Chen ◽  
Jiangtao Liu ◽  
Haihao Wu ◽  
...  

Abstract Background The superior facet arthroplasty is important for intervertebral foramen microscopy. To our knowledge, there is no study about the postoperative biomechanics of adjacent L4/L5 segments after different methods of S1 superior facet arthroplasty. To evaluate the effect of S1 superior facet arthroplasty on lumbar range of motion and disc stress of adjacent segment (L4/L5) under the intervertebral foraminoplasty. Methods Eight finite element models (FEMs) of lumbosacral vertebrae (L4/S) had been established and validated. The S1 superior facet arthroplasty was simulated with different methods. Then, the models were imported into Nastran software after optimization; 500 N preload was imposed on the L4 superior endplate, and 10 N⋅m was given to simulate flexion, extension, lateral flexion and rotation. The range of motion (ROM) and intervertebral disc stress of the L4-L5 spine were recorded. Results The ROM and disc stress of L4/L5 increased with the increasing of the proportions of S1 superior facet arthroplasty. Compared with the normal model, the ROM of L4/L5 significantly increased in most directions of motion when S1 superior facet formed greater than 3/5 from the ventral to the dorsal or 2/5 from the apex to the base. The disc stress of L4/L5 significantly increased in most directions of motion when S1 superior facet formed greater than 3/5 from the ventral to the dorsal or 1/5 from the apex to the base. Conclusion In this study, the ROM and disc stress of L4/L5 were affected by the unilateral S1 superior facet arthroplasty. It is suggested that the forming range from the ventral to the dorsal should be less than 3/5 of the S1 upper facet joint. It is not recommended to form from apex to base. Level of evidence Level IV

2021 ◽  
Author(s):  
Zewen Shi ◽  
Lin Shi ◽  
Xianjun Chen ◽  
Jiangtao Liu ◽  
Haihao Wu ◽  
...  

Abstract Background. The superior facet arthroplasty is important for intervertebral foramen microscopy. To our knowledge, no study about the postoperative biomechanics of adjacent L4/L5 segments after different methods of S1 superior facet arthroplasty. To evaluate the effect of S1 superior facet arthroplasty on lumbar range of motion and disc stress of adjacent segment (L4/L5) under the intervertebral foramina plasty.Methods. Eight finite element models (FEMs) of lumbosacral vertebrae (L4/S) had been established and validated. The S1 superior facet arthroplasty was simulated with different methods. Then, the models were imported into Nastran software after optimization. 500N preload was imposed on the L4 superior endplate and 10 Nm was given to simulate flexion, extension, lateral flexion and rotation. The range of motion (ROM) and intervertebral disc stress of L4-L5 spine were recorded.Results. The ROM and disc stress of L4/L5 increased with the increasing of the proportions of S1 superior facet arthroplasty. Compared with the normal model, the ROM of L4/L5 significantly increase in most directions of motion when S1 superior facet formed greater than 3/5 from ventral to dorsal or 2/5 from apex to base. The disc stress of L4/L5 significantly increase in most directions of motion when S1 superior facet formed greater than 3/5 from ventral to dorsal or 1/5 from apex to base.Conclusion. In this study, the ROM and disc stress of L4/L5 were effected by the unilateral S1 superior facet arthroplasty. It is suggested that the forming range from ventral to dorsal should be less than 3/5 of S1 upper facet joint. It is not recommended to form from apex to base.


2012 ◽  
Vol 72 (1) ◽  
pp. ons21-ons26 ◽  
Author(s):  
Hao Xu ◽  
Hao Tang ◽  
Xuemei Guan ◽  
Fugui Jiang ◽  
Neng Xu ◽  
...  

Abstract Background: The transforaminal lumbar interbody fusion (TLIF) procedure may reduce many of the risks and limitations associated with posterior lumbar interbody fusion (PLIF). However, little is known about the biomechanical difference between PLIF and TLIF. Objective: To determine the biomechanical difference between PLIF and TLIF by finite-element analysis. Methods: Three validated finite-element models of L3-5 lumbar segment were created (intact model, PLIF model, and TLIF model). To analyze the biomechanics of these models, flexion, extension, rotation, and lateral bending moments of 7.5 N-m with a compressive preload of 400 N were imposed on the superior surfaces of the L3 vertebral body. Results: The range of motion at the L4-5 level of the PLIF and TLIF models decreased for all loading cases, compared with the intact model. Differences in the range of motion between PLIF and TLIF were not significant at less than 1 degree for all loading cases. The stress of the cage was found to be high in the PLIF model at the cageendplate interface under all loading conditions. The stress exerted on the pedicle screw was greater in TLIF than PLIF. Particularly in flexion loading, the stress experienced by the pedicle screw in the TLIF model was 70.7% greater than that in the PLIF model. Conclusion: The TLIF procedure increases the approximate biomechanical stability and reduces stress at the cage-endplate interface, except for a slight increase in screw stress. Clinically, the TLIF procedure may reduce many of the risks and limitations associated with PLIF and offer a useful alternative to the PLIF procedure.


1988 ◽  
Vol 16 (1) ◽  
pp. 18-43 ◽  
Author(s):  
J. T. Oden ◽  
T. L. Lin ◽  
J. M. Bass

Abstract Mathematical models of finite deformation of a rolling viscoelastic cylinder in contact with a rough foundation are developed in preparation for a general model for rolling tires. Variational principles and finite element models are derived. Numerical results are obtained for a variety of cases, including that of a pure elastic rubber cylinder, a viscoelastic cylinder, the development of standing waves, and frictional effects.


Author(s):  
R. Villavicencio ◽  
Bin Liu ◽  
Kun Liu

The paper summarises observations of the fracture response of small-scale double hull specimens subjected to quasi-static impact loads by means of simulations of the respective experiments. The collision scenarios are used to evaluate the discretisation of the finite element models, and the energy-responses given by various failure criteria commonly selected for collision assessments. Nine double hull specimens are considered in the analysis so that to discuss the advantages and disadvantages of the different failure criterion selected for the comparison. Since a large scatter is observed from the numerical results, a discussion on the reliability of finite element analysis is also provided based on the present study and other research works found in the literature.


Author(s):  
Héctor E Jaramillo S

The annulus fibrosus has substantial variations in its geometrical properties (among individuals and between levels), and plays an important role in the biomechanics of the spine. Few works have studied the influence of the geometrical properties including annulus area, anterior / posterior disc height, and over the range of motion, but in general these properties have not been reported in the finite element models. This paper presents a probabilistic finite element analyses (Abaqus 6.14.2) intended to assess the effects of the average disc height ( hp) and the area ( A) of the annulus fibrosus on the biomechanics of the lumbar spine. The annulus model was loaded under flexion, extension, lateral bending, and axial rotation and analyzed for different combinations of hpand A in order to obtain their effects over the range of motion. A set of 50 combinations of hp(mean = 18.1 mm, SD = 3.5 mm) and A (mean = 49.8%, SD = 4.6%) were determined randomly according to a normal distribution. A Yeoh energy function was used for the matrix and an exponential function for the fibers. The range of motion was more sensitive to hpthan to A. With regard to the range of motion the segment was more sensitive in the following order: flexion, axial rotation, extension, and lateral bending. An increase of the hpproduces an increase of the range of motion, but this decreases when A increases. Comparing the range of motion with the experimental data, on average, 56.0% and 73.0% of the total of data were within the experimental range for the L4–L5 and L5–S1 segments, respectively. Further, an analytic equation was derived to obtain the range of motion as a function of the hpand A. This equation can be used to calibrate a finite element model of the spine segment, and also to understand the influence of each geometrical parameter on the range of motion.


Author(s):  
Wencan Ke ◽  
Chao Chen ◽  
Bingjin Wang ◽  
Wenbin Hua ◽  
Saideng Lu ◽  
...  

Symptomatic adjacent segment disease (ASD) is a common challenge after anterior cervical discectomy and fusion (ACDF). The objective of this study was to compare the biomechanical effects of a second ACDF and laminoplasty for the treatment of ASD after primary ACDF. We developed a finite element (FE) model of the C2-T1 based on computed tomography images. The FE models of revision surgeries of ACDF and laminoplasty were simulated to treat one-level and two-level ASD after primary ACDF. The range of motion (ROM) and intradiscal pressure (IDP) of the adjacent segments, and stress in the cord were analyzed to investigate the biomechanical effects of the second ACDF and laminoplasty. The results indicated that revision surgery of one-level ACDF increased the ROM and IDP at the C2–C3 segment, whereas two-level ACDF significantly increased the ROM and IDP at the C2–C3 and C7-T1 segments. Furthermore, no significant changes in the ROM and IDP of the laminoplasty models were observed. The stress in the cord of the re-laminoplasty model decreased to some extent, which was higher than that of the re-ACDF model. In conclusion, both ACDF and laminoplasty can relieve the high level of stress in the spinal cord caused by ASD after primary ACDF, whereas ACDF can achieve better decompression effect. Revision surgery of the superior ACDF or the superior and inferior ACDF after the primary ACDF increased the ROM and IDP at the adjacent segments, which may be the reason for the high incidence of recurrent ASD after second ACDF.


2017 ◽  
Vol 54 (1) ◽  
pp. 180-179 ◽  
Author(s):  
Raul Cormos ◽  
Horia Petrescu ◽  
Anton Hadar ◽  
Gorge Mihail Adir ◽  
Horia Gheorghiu

The main purpose of this paper is the study the behavior of four multilayered composite material configurations subjected to different levels of low velocity impacts, in the linear elastc domain of the materials, using experimental testing and finite element simulation. The experimental results obtained after testing, are used to validate the finite element models of the four composite multilayered honeycomb structures, which makes possible the study, using only the finite element method, of these composite materials for a give application.


Sign in / Sign up

Export Citation Format

Share Document