scholarly journals The effect of aeration conditions, characterized by the volumetric mass transfer coefficient KLa, on the fermentation kinetics of Bacillus thuringiensis kurstaki

2015 ◽  
Vol 210 ◽  
pp. 100-106 ◽  
Author(s):  
Jihane Rahbani Mounsef ◽  
Dominique Salameh ◽  
Nicolas Louka ◽  
Cedric Brandam ◽  
Roger Lteif
2008 ◽  
Vol 273-276 ◽  
pp. 679-684
Author(s):  
Roberto Parreiras Tavares ◽  
André Afonso Nascimento ◽  
Henrique Loures Vale Pujatti

The RH process is a secondary refining process that can simultaneously attain significant levels of removal of interstitial elements, such as carbon, nitrogen and hydrogen, from liquid steel. In the RH process, the decarburization rate plays a very important role in determining the productivity of the equipment. The kinetics of this reaction is controlled by mass transfer in the liquid phase. In the present work, a physical model of a RH degasser has been built and used in the study of the kinetics of decarburization. The effects of the gas flow rate and of the configurations of the nozzles used in the injection of the gas have been analyzed. The decarburization reaction of liquid steel was simulated using a reaction involving CO2 and caustic solutions. The concentration of CO2 in the solution was evaluated using pH measurements. Based on the experimental results, it was possible to estimate the reaction rate constant. A volumetric mass transfer coefficient was then calculated based on these rate constants and on the circulation rate of the liquid. The logarithm of the mass transfer coefficient showed a linear relationship with the logarithm of the gas flow rate. The slope of the line was found to vary according to the relevance of the reaction at the free surface in the vacuum chamber. A linear relationship between the volumetric mass transfer coefficient and the nozzle Reynolds number was also observed. The slopes of the lines changed according to the relative importance of the two reaction sites, gas-liquid interface in the upleg snorkel and in the vacuum. At higher Reynolds number, the reaction in the vacuum chamber tends to be more significant.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Li Chaoyue ◽  
Feng Shiyu ◽  
Xu Lei ◽  
Peng Xiaotian ◽  
Yan Yan

AbstractDissolved oxygen evolving from aviation fuel leads to an increase in the oxygen concentration in an inert aircraft fuel tank ullage that may increase the flammability of the tank. Aviation fuel scrubbing with nitrogen-enriched air (NEA) can largely reduce the amount of dissolved oxygen and counteract the adverse effect of oxygen evolution. The gas–liquid mass transfer characteristics of aviation fuel scrubbing are investigated using the computational fluid dynamics method, which is verified experimentally. The effects of the NEA bubble diameter, NEA superficial velocity and fuel load on oxygen transfer between NEA and aviation fuel are discussed. Findings from this work indicate that the descent rate of the average dissolved oxygen concentration, gas holdup distribution and volumetric mass transfer coefficient increase with increasing NEA superficial velocity but decrease with increasing bubble diameter and fuel load. When the bubble diameter varies from 1 to 4 mm, the maximum change of descent rate of dissolved oxygen concentration is 18.46%, the gas holdup is 8.73%, the oxygen volumetric mass transfer coefficient is 81.45%. When the NEA superficial velocities varies from 0.04 to 0.10 m/s, the maximum change of descent rate of dissolved oxygen concentration is 146.77%, the gas holdup is 77.14%, the oxygen volumetric mass transfer coefficient is 175.38%. When the fuel load varies from 35 to 80%, the maximum change of descent rate of dissolved oxygen concentration is 21.15%, the gas holdup is 49.54%, the oxygen volumetric mass transfer coefficient is 44.57%. These results provide a better understanding of the gas and liquid mass transfer characteristics of aviation fuel scrubbing in aircraft fuel tanks and can promote the optimal design of fuel scrubbing inerting systems.


Author(s):  
Radim Petříček ◽  
Tomáš Moucha ◽  
Tomáš Kracík ◽  
František Jonáš Rejl ◽  
Lukáš Valenz ◽  
...  

Author(s):  
Predrag Kojic ◽  
Jovana Kojic ◽  
Milada Pezo ◽  
Jelena Krulj ◽  
Lato Pezo ◽  
...  

The objective of this study was to investigate the hydrodynamics and the gas-liquid mass transfer coefficient of an external-loop airlift reactor (ELAR). The ELAR was operated in three cases: different inlet velocities of fluids, different alcohols solutions (water, 0.5% methanol, 0.5% ethanol, 0.5% propanol and 0.5% butanol) and different concentration of methanol in solutions (0%, 0.5%, 1%, 2% and 5%). The influence of superficial gas velocity and various diluted alcohol solutions on hydrodynamics and gas-liquid mass transfer coefficient of the ELAR was studied. Experimentally, the gas hold-up, liquid velocities and volumetric mass transfer coefficient values in the riser and the downcomer were obtained from the literature source. A computational fluid dynamics (CFD) model was developed, based on two-phase flow, investigating different liquids regarding surface tension, assuming the ideal gas flow, applying the finite volume method and Eulerian-Eulerian model. The volumetric mass transfer coefficient was determined using CFD model, as well as artificial neural network model. The effects of liquid parameters and gas velocity on the characteristics of the gas-liquid mass transfer were simulated. These models were compared with appropriate experimental results. CFD model successfully succeed to simulate the influence of different alcohols regarding the number of C-atoms on hydrodynamics and mass transfer.


2015 ◽  
Vol 69 (5) ◽  
pp. 553-559 ◽  
Author(s):  
Milica Djekovic-Sevic ◽  
Nevenka Boskovic-Vragolovic ◽  
Ljiljana Takic ◽  
Radmila Garic-Grulovic ◽  
Srdjan Pejanovic

Experimental investigation of gas-liquid mass transfer of ozone in water, in bubble column with two-fluid nozzle gas distributor (BKDM), under different operating conditions, are presented in this work. The main objective was to determine the ozone volumetric mass transfer coefficient, kL a, in calm uniform section of the column, under different values of gas and liquid flow rates. Obtained values of these coefficients were compared with the values in countercurrent bubble column. The critical liquid flowrate, when gas hold up reaches its maximum, was experimentally determined. It was shown that the maximum value of the ozone volumetric mass transfer coefficient is obtained just when liquid flowrate is at its critical value.


Sign in / Sign up

Export Citation Format

Share Document