Solvent Promotion on the Metal-Support Interaction and Activity of Pd@ZrO2 Catalyst: Formation of Metal Hydrides as the New Catalytic Active Phase at the Solid-Liquid Interface

Author(s):  
Guang-Jie Xia ◽  
Yang-Gang Wang
Author(s):  
N.L. Torres-García ◽  
R. Huirache-Acuña ◽  
T.A. Zepeda-Partida ◽  
B. Pawelec ◽  
J.L.G. Fierro ◽  
...  

Abstract In this work, novel trimetallic catalysts based on transition metal sulphides (Ru, Mo and Ni) supported on SBA-15 were synthesized. Citric acid (CA) was used as chelating agent in order to enhance the dispersion of the active phase and minimize the metal-support interaction. Sulfided catalysts were evaluated in the reaction of hydrodesulfurization (HDS) of dibenzothiophene (DBT) at 320 °C and 54.5 atm of total H2 pressure. The effects of different Ru/(Ni + Mo) atomic ratios on the active phase were studied. The catalysts were characterized using Micro-Raman spectroscopy, DRIFTS, XRD, XPS, HR-TEM and SEM techniques. Results have shown that there was a better dispersion of the metallic phases, which improves the physicochemical properties of the catalysts, increasing the catalytic activity. The trimetallic RuxMoNi catalyst with the lowest atomic ratio, have shown superior catalytic activity compared to their higher atomic ratio counterparts. The interaction of the chelating agent improved the catalytic activity, which was superior to that observed for NiMo based catalysts, considered one of the most active hydrotreating catalysts.


Author(s):  
Hui Yang ◽  
Hui Wang ◽  
Lisha Wei ◽  
Yong Yang ◽  
Yongwang Li ◽  
...  

To understand the metal-support interaction of oxide supported transition metal catalysts, we computed the reaction mechanisms of dry and steam reforming of methane on tetragonal ZrO2(101) supported Ni catalyst. Based...


2017 ◽  
Vol 197 ◽  
pp. 87-99 ◽  
Author(s):  
Tracey van Heerden ◽  
Eric van Steen

It is challenging to isolate the effect of metal–support interactions on catalyst reaction performance. In order to overcome this problem, inverse catalysts can be prepared in the laboratory and characterized and tested at relevant conditions. Inverse catalysts are catalysts where the precursor to the catalytically active phase is bonded to a support-like ligand. We can then view the metal–support interaction as a ligand interaction with the support acting as a supra-molecular ligand. Importantly, laboratory studies have shown that these ligands are still present after reduction of the catalyst. By varying the quantity of these ligands present on the surface, insight into the positive effect SMSI have during a reaction is gained. Here, we present a theoretical study of mono-dentate alumina support based ligands, adsorbed on cobalt surfaces. We find that the presence of the ligand may significantly affect the morphology of a cobalt crystallite. With Fischer–Tropsch synthesis in mind, the CO dissociation is used as a probe reaction, with the ligand assisting the dissociation, making it feasible to dissociate CO on the dense fcc Co(111) surface. The nature of the interaction between the ligand and the probe molecule is characterized, showing that the support-like ligands’ metal centre is directly interacting with the probe molecule.


2021 ◽  
Author(s):  
Liang Wei ◽  
Jian Chen ◽  
Shuai Lyu ◽  
Chengchao Liu ◽  
Yanxi Zhao ◽  
...  

The delicate balance between dispersion and reduction of the Co-based Fischer–Tropsch synthesis catalyst is the golden key to enhancing catalytic performance, which highly depends on an optimized metal–support interaction. In...


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yi Shi ◽  
Zhi-Rui Ma ◽  
Yi-Ying Xiao ◽  
Yun-Chao Yin ◽  
Wen-Mao Huang ◽  
...  

AbstractTuning metal–support interaction has been considered as an effective approach to modulate the electronic structure and catalytic activity of supported metal catalysts. At the atomic level, the understanding of the structure–activity relationship still remains obscure in heterogeneous catalysis, such as the conversion of water (alkaline) or hydronium ions (acid) to hydrogen (hydrogen evolution reaction, HER). Here, we reveal that the fine control over the oxidation states of single-atom Pt catalysts through electronic metal–support interaction significantly modulates the catalytic activities in either acidic or alkaline HER. Combined with detailed spectroscopic and electrochemical characterizations, the structure–activity relationship is established by correlating the acidic/alkaline HER activity with the average oxidation state of single-atom Pt and the Pt–H/Pt–OH interaction. This study sheds light on the atomic-level mechanistic understanding of acidic and alkaline HER, and further provides guidelines for the rational design of high-performance single-atom catalysts.


Nanoscale ◽  
2020 ◽  
Vol 12 (27) ◽  
pp. 14825-14830
Author(s):  
Kai-Qiang Jing ◽  
Yu-Qing Fu ◽  
Zhi-Qiao Wang ◽  
Zhe-Ning Chen ◽  
Hong-Zi Tan ◽  
...  

Zn2+-Modified MgAl-LDH with ultra-low Pd cluster loading was synthesized. The higher adsorption energy and strong covalent metal–support interaction via forming Pd–Zn bonds over Pd/ZnMgAl-LDH account for the robust catalytic performance.


Sign in / Sign up

Export Citation Format

Share Document