Mechanical design of brush coating technology for the alignment of one-dimension nanomaterials

2021 ◽  
Vol 583 ◽  
pp. 188-195
Author(s):  
Linpeng Li ◽  
Tonghui Yang ◽  
Kun Wang ◽  
Hongwei Fan ◽  
Chengyi Hou ◽  
...  
Author(s):  
Elrnar Zeitler

Considering any finite three-dimensional object, a “projection” is here defined as a two-dimensional representation of the object's mass per unit area on a plane normal to a given projection axis, here taken as they-axis. Since the object can be seen as being built from parallel, thin slices, the relation between object structure and its projection can be reduced by one dimension. It is assumed that an electron microscope equipped with a tilting stage records the projectionWhere the object has a spatial density distribution p(r,ϕ) within a limiting radius taken to be unity, and the stage is tilted by an angle 9 with respect to the x-axis of the recording plane.


Author(s):  
B. D. Athey ◽  
A. L. Stout ◽  
M. F. Smith ◽  
J. P. Langmore

Although there is general agreement that Inactive chromosome fibers consist of helically packed nucleosomes, the pattern of packing is still undetermined. Only one of the proposed models, the crossed-linker model, predicts a variable diameter dependent on the length of DNA between nucleosomes. Measurements of the fiber diameter of negatively-stained and frozen- hydrated- chromatin from Thyone sperm (87bp linker) and Necturus erythrocytes (48bp linker) have been previously reported from this laboratory. We now introduce a more reliable method of measuring the diameters of electron images of fibrous objects. The procedure uses a modified version of the computer program TOTAL, which takes a two-dimensional projection of the fiber density (represented by the micrograph itself) and projects it down the fiber axis onto one dimension. We illustrate this method using high contrast, in-focus STEM images of TMV and chromatin from Thyone and Necturus. The measured diameters are in quantitative agreement with the expected values for the crossed-linker model for chromatin structure


Author(s):  
Marc J.C. de Jong ◽  
P. Emile S.J. Asselbergs ◽  
Max T. Otten

A new step forward in Transmission Electron Microscopy has been made with the introduction of the CompuStage on the CM-series TEMs: CM120, CM200, CM200 FEG and CM300. This new goniometer has motorization on five axes (X, Y, Z, α, β), all under full computer control by a dedicated microprocessor that is in communication with the main CM processor. Positions on all five axes are read out directly - not via a system counting motor revolutions - thereby providing a high degree of accuracy. The CompuStage enters the octagonal block around the specimen through a single port, allowing the specimen stage to float freely in the vacuum between the objective-lens pole pieces, thereby improving vibration stability and freeing up one access port. Improvements in the mechanical design ensure higher stability with regard to vibration and drift. During stage movement the holder O-ring no longer slides, providing higher drift stability and positioning accuracy as well as better vacuum.


2007 ◽  
Vol 46 (01) ◽  
pp. 38-42 ◽  
Author(s):  
V. Schulz ◽  
I. Nickel ◽  
A. Nömayr ◽  
A. H. Vija ◽  
C. Hocke ◽  
...  

SummaryThe aim of this study was to determine the clinical relevance of compensating SPECT data for patient specific attenuation by the use of CT data simultaneously acquired with SPECT/CT when analyzing the skeletal uptake of polyphosphonates (DPD). Furthermore, the influence of misregistration between SPECT and CT data on uptake ratios was investigated. Methods: Thirty-six data sets from bone SPECTs performed on a hybrid SPECT/CT system were retrospectively analyzed. Using regions of interest (ROIs), raw counts were determined in the fifth lumbar vertebral body, its facet joints, both anterior iliacal spinae, and of the whole transversal slice. ROI measurements were performed in uncorrected (NAC) and attenuation-corrected (AC) images. Furthermore, the ROI measurements were also performed in AC scans in which SPECT and CT images had been misaligned by 1 cm in one dimension beforehand (ACX, ACY, ACZ). Results: After AC, DPD uptake ratios differed significantly from the NAC values in all regions studied ranging from 32% for the left facet joint to 39% for the vertebral body. AC using misaligned pairs of patient data sets led to a significant change of whole-slice uptake ratios whose differences ranged from 3,5 to 25%. For ACX, the average left-to-right ratio of the facet joints was by 8% and for the superior iliacal spines by 31% lower than the values determined for the matched images (p <0.05). Conclusions: AC significantly affects DPD uptake ratios. Furthermore, misalignment between SPECT and CT may introduce significant errors in quantification, potentially also affecting leftto- right ratios. Therefore, at clinical evaluation of attenuation- corrected scans special attention should be given to possible misalignments between SPECT and CT.


Author(s):  
Allaoua Brahmia ◽  
Ridha Kelaiaia

Abstract To establish an exercise in open muscular chain rehabilitation (OMC), it is necessary to choose the type of kinematic chain of the mechanical / biomechanical system that constitutes the lower limbs in interaction with the robotic device. Indeed, it’s accepted in biomechanics that a rehabilitation exercise in OMC of the lower limb is performed with a fixed hip and a free foot. Based on these findings, a kinematic structure of a new machine, named Reeduc-Knee, is proposed, and a mechanical design is carried out. The contribution of this work is not limited to the mechanical design of the Reeduc-Knee system. Indeed, to define the minimum parameterizing defining the configuration of the device relative to an absolute reference, a geometric and kinematic study is presented.


2009 ◽  
Vol 63 (9) ◽  
pp. 1060-1063
Author(s):  
Kunio Osaki
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document